-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
51 lines (42 loc) · 1.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
from tqdm import tqdm
device = "cuda" if torch.cuda.is_available() else "cpu"
def train(net, optimizer, trainloader):
criterion = nn.CrossEntropyLoss()
net.train()
train_loss = 0
correct = 0
total = 0
bar = tqdm(iter(trainloader), desc="batch_loop", leave=False)
for inputs, targets in bar:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
bar.set_description("accuracy %0.2f" % (100 * correct / total))
return train_loss / len(trainloader), correct / total
def test(net, testloader):
criterion = nn.CrossEntropyLoss()
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
bar = tqdm(iter(testloader), desc="batch_loop", leave=False)
for inputs, targets in bar:
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
bar.set_description("accuracy %0.2f" % (100 * correct / total))
return test_loss / len(testloader), correct / total