-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_utils.py
50 lines (42 loc) · 2.29 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torchvision
import torchvision.transforms as transforms
import torch
def get_cifar10_train_loader():
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
return torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8)
def get_cifar10_test_loader():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
return torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=8)
def get_cifar10_loaders():
trainloader = get_cifar10_train_loader()
testloader = get_cifar10_test_loader()
return trainloader, testloader
def get_svhn_loaders():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.SVHN(root='./data', split='extra', download=True, transform=transform)
testset = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=8)
return trainloader, testloader
def get_mnist_loaders(**kwargs):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=4)
return trainloader, testloader