-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnrollement.py
183 lines (144 loc) · 6.49 KB
/
Enrollement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import csv
import os
from pathlib import Path
import joblib
import neurokit2 as nk
import numpy as np
import pandas as pd
from numpy import mean
from scipy.signal import lfilter, find_peaks, peak_widths, peak_prominences
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from DataProcessing import k_nearest_neighbour_on_waves, get_time, get_amplitude, get_distance, get_slope, get_angle, \
analyze_dataset, remove_nan
from Filters import HighPassFilter, BandStopFilter, LowPassFilter, SmoothSignal
def process_new_data():
old_headers = pd.read_csv('datasets/dataset.csv', nrows=0).columns.tolist()
headers = pd.read_csv('datasets/analyzed_dataset.csv', nrows=0).columns.tolist()
signal_to_append = []
for file in Path("./classify/to_be_processed/").glob('*.csv'):
extracted_signal = signal_processing("classify/to_be_processed/" + file.name)
if len(extracted_signal) == 0:
os.remove("classify/to_be_processed/" + file.name)
continue
patient_datas = pd.Series(extracted_signal, index=old_headers)
signal_to_append.append(patient_datas[headers].tolist())
os.remove("classify/to_be_processed/" + file.name)
with open('classify/to_predict.csv', 'a') as file:
writer = csv.writer(file)
if os.stat('classify/to_predict.csv').st_size == 0:
writer.writerow(headers)
writer.writerows(signal_to_append)
# wrapper so that the processing can be used also for predictions
def wr_process_processing(filename, dataset):
df = pd.read_csv(dataset)
signal_processed = signal_processing(filename)
if len(signal_processed) == 0:
return
patient_datas = pd.Series(signal_processed, index=df.columns)
df = df.append(patient_datas, ignore_index=True)
df.to_csv(dataset, index=False)
def signal_processing(filename):
enroll_file = open(filename, "r")
patient_name = ""
signal_list = []
for index, line in enumerate(enroll_file):
if index == 0:
key, value = line.split(",")
patient_name = value
if index > 12:
# signal acquisition
signal_list.append(float(line.replace(",", ".")) / 1000)
denoised_ecg = lfilter(HighPassFilter(), 1, signal_list)
denoised_ecg = lfilter(BandStopFilter(), 1, denoised_ecg)
denoised_ecg = lfilter(LowPassFilter(), 1, denoised_ecg)
cleaned_signal = SmoothSignal(denoised_ecg)
# only keep best r peaks with prominence = 1
r_peak, _ = find_peaks(cleaned_signal, prominence=0.25, distance=100)
# discard signals that have too few r peaks detected
if len(r_peak) < 15:
print("patient:", patient_name)
print("!!!! Enrollment not successful - non enough peaks")
return []
signal_dwt, waves_dwt = nk.ecg_delineate(cleaned_signal, rpeaks=r_peak, sampling_rate=512, method="dwt",
show=False,
show_type='peaks')
t_peaks = k_nearest_neighbour_on_waves(waves_dwt['ECG_T_Peaks'])
p_peaks = k_nearest_neighbour_on_waves(waves_dwt['ECG_P_Peaks'])
q_peaks = k_nearest_neighbour_on_waves(waves_dwt['ECG_Q_Peaks'])
s_peaks = k_nearest_neighbour_on_waves(waves_dwt['ECG_S_Peaks'])
r_peak = k_nearest_neighbour_on_waves(r_peak)
if len(t_peaks) == 0 or len(p_peaks) == 0 or len(q_peaks) == 0 or len(s_peaks) == 0 or len(r_peak) == 0:
print("Signal not strong enough")
return []
Tx = mean(peak_widths(cleaned_signal, t_peaks))
Px = mean(peak_widths(cleaned_signal, p_peaks))
Qx = mean(peak_widths(cleaned_signal, q_peaks))
Sx = mean(peak_widths(cleaned_signal, s_peaks))
Ty = mean(peak_prominences(cleaned_signal, t_peaks))
Py = mean(peak_prominences(cleaned_signal, p_peaks))
Qy = mean(peak_prominences(cleaned_signal, q_peaks))
Sy = mean(peak_prominences(cleaned_signal, s_peaks))
final_peaks = []
final_peaks.extend(p_peaks)
final_peaks.extend(t_peaks)
final_peaks.extend(q_peaks)
final_peaks.extend(r_peak)
final_peaks.extend(s_peaks)
final_peaks.sort()
# continue only if all peaks were extracted
if len(final_peaks) % 5 != 0:
print("patient:", patient_name)
print("!!!! Enrollment not successful - incorrect number of peaks")
return []
features_time = [Tx, Px, Qx, Sx]
features_time.extend(get_time(final_peaks, cleaned_signal))
features_amplitude = [Ty, Py, Qy, Sy]
features_amplitude.extend(get_amplitude(final_peaks, cleaned_signal))
features_distance = get_distance(final_peaks, cleaned_signal)
features_slope = get_slope(final_peaks, cleaned_signal)
features_angle = get_angle(final_peaks, cleaned_signal)
to_file = []
to_file.append(patient_name.replace("\n", ""))
to_file.extend(features_time)
to_file.extend(features_amplitude)
to_file.extend(features_distance)
to_file.extend(features_slope)
to_file.extend(features_angle)
enroll_file.close()
return to_file
def train_new_classifier(dataset, predictions):
best_models = [n.name for n in Path('.').glob('*.joblib')]
if len(best_models) == 0:
print("No model found!")
return
if len(best_models) > 1:
print("Too many models found!")
return
best_model = best_models[0]
model = joblib.load(best_model)
X = pd.read_csv(dataset)
# encode categorical value
enc = LabelEncoder()
y = enc.fit_transform(X.pop('PATIENT_NAME'))
np.save('classes.npy', enc.classes_)
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True, random_state=42)
model.fit(X_train, y_train)
print(model.score(X_train, y_train))
joblib.dump(model, 'model.joblib', compress=3)
y_pred = model.predict(X_test)
y_scores = model.predict_proba(X_test)
y_pred = enc.inverse_transform(y_pred)
y_test = enc.inverse_transform(y_test)
new_df = pd.DataFrame(y_test, columns=['REAL'])
new_df.insert(0, "PREDICTED", y_pred)
new_df.insert(2, "SCORES", list(y_scores))
new_df.to_csv(predictions, index=False)
def start_enrollment(dataset, balanced_dataset, analyzed_dataset, predictions):
for p in Path('./enrollements/').glob('*.csv'):
wr_process_processing("enrollements/" + p.name, dataset)
os.remove("enrollements/" + p.name)
analyze_dataset(analyzed_dataset, balanced_dataset, dataset)
train_new_classifier(balanced_dataset, predictions)