Skip to content
This repository has been archived by the owner on Oct 19, 2023. It is now read-only.

Latest commit

 

History

History
86 lines (67 loc) · 4.25 KB

README.md

File metadata and controls

86 lines (67 loc) · 4.25 KB

Conditional Convolutions for Instance Segmentation (Oral)

Conditional Convolutions for Instance Segmentation;
Zhi Tian, Chunhua Shen and Hao Chen;
In: Proc. European Conference on Computer Vision (ECCV), 2020.
arXiv preprint arXiv:2003.05664

[Paper] [BibTeX]

Installation & Quick Start

First, follow the default instruction to install the project and datasets/README.md set up the datasets (e.g., MS-COCO).

For demo, run the following command lines:

wget https://cloudstor.aarnet.edu.au/plus/s/M8nNxSR5iNP4qyO/download -O CondInst_MS_R_101_3x_sem.pth
python demo/demo.py \
    --config-file configs/CondInst/MS_R_101_3x_sem.yaml \
    --input input1.jpg input2.jpg \
    --opts MODEL.WEIGHTS CondInst_MS_R_101_3x_sem.pth

For training on COCO, run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/CondInst/MS_R_50_1x.yaml \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/CondInst_MS_R_50_1x

For evaluation on COCO, run:

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/CondInst/MS_R_50_1x.yaml \
    --eval-only \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/CondInst_MS_R_50_1x \
    MODEL.WEIGHTS training_dir/CondInst_MS_R_50_1x/model_final.pth

Models

COCO Instance Segmentation Baselines with CondInst

Name inf. time box AP mask AP download
CondInst_MS_R_50_1x 14 FPS 39.7 35.7 model
CondInst_MS_R_50_3x 14 FPS 41.9 37.5 model
CondInst_MS_R_101_3x 11 FPS 43.3 38.6 model

With an auxiliary semantic segmentation task (set MODEL.CONDINST.MASK_BRANCH.SEMANTIC_LOSS_ON = True to enable it):

Name inf. time box AP mask AP mask AP (test-dev) download
CondInst_MS_R_50_3x_sem 14 FPS 42.6 38.2 38.7 model
CondInst_MS_R_101_3x_sem 11 FPS 44.6 39.8 40.1 model

With BiFPN:

Name inf. time box AP mask AP download
CondInst_MS_R_50_BiFPN_1x 13 FPS 42.5 37.3 model
CondInst_MS_R_50_BiFPN_3x 13 FPS 44.3 38.9 model
CondInst_MS_R_50_BiFPN_3x_sem 13 FPS 44.7 39.4 model
CondInst_MS_R_101_BiFPN_3x 10 FPS 45.3 39.6 model
CondInst_MS_R_101_BiFPN_3x_sem 10 FPS 45.7 40.2 model

Disclaimer:

  • All models are trained with multi-scale data augmentation. Inference time is measured on a single NVIDIA 1080Ti with batch size 1.
  • The final mask's resolution is 1/4 of the input image (i.e., MODEL.CONDINST.MASK_OUT_STRIDE = 4, which is enough on MS-COCO and different from our original paper. In the paper, we used MODEL.CONDINST.MASK_OUT_STRIDE = 2. If you want high-resolution mask results, please reduce it.
  • This is a reimplementation. Thus, the numbers are slightly different from our original paper (within 0.1% in mask AP).

Citing CondInst

If you use CondInst in your research or wish to refer to the baseline results, please use the following BibTeX entries.

@inproceedings{tian2020conditional,
  title     =  {Conditional Convolutions for Instance Segmentation},
  author    =  {Tian, Zhi and Shen, Chunhua and Chen, Hao},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}