-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathredshift.yml
64 lines (59 loc) · 2.64 KB
/
redshift.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
version: 2
sources:
- name: snowplow
database: analytics
schema: snowplow_external
loader: S3
loaded_at_field: collector_tstamp
tables:
- name: event
external:
location: "s3://bucket/path" # Amazon S3 path prefix
row_format: > # Hive specification
serde 'org.openx.data.jsonserde.JsonSerDe'
with serdeproperties (
'strip.outer.array'='false'
)
partitions:
- name: appId
data_type: varchar(255)
vals: # list of values
- dev
- prod
path_macro: dbt_external_tables.key_value
# Macro to convert partition value to file path specification.
# This "helper" macro is defined in the package, but you can use
# any custom macro that takes keyword arguments 'name' + 'value'
# and returns the path as a string
# If multiple partitions, order matters for compiling S3 path
- name: collector_date
data_type: date
vals: # macro w/ keyword args to generate list of values
macro: dbt.dates_in_range
args:
start_date_str: '2019-08-01'
end_date_str: '{{modules.datetime.date.today().strftime("%Y-%m-%d")}}'
in_fmt: "%Y-%m-%d"
out_fmt: "%Y-%m-%d"
path_macro: dbt_external_tables.year_month_day
# specify ALL columns to extract, unnest, or otherwise parse from the source files.
# all Redshift external tables natively include `$path` and `$size` pseudocolumns,
# so there is no need to specify those here.
columns:
- name: app_id
data_type: varchar(255)
description: "Application ID"
- name: domain_sessionidx
data_type: int
description: "A visit / session index"
# Spectrum timestamp columns *must* be in the format `yyyy-MM-dd HH:mm:ss.SSSSSS`
# (e.g. '2017-05-01 11:30:59.000000'). Otherwise, load as varchar and
# parse/cast in a staging model.
- name: etl_tstamp
data_type: varchar(32)
description: "Timestamp event began ETL"
# Spectrum columns with nested values require Hive-style specifications.
# I usually give up, make them big varchars, and parse in a staging model.
- name: contexts
data_type: varchar(65000)
description: "Contexts attached to event by Tracker"