-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK-Clustering.py
59 lines (41 loc) · 1.29 KB
/
K-Clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
==================
K-means Clustering
==================
The plot displays what a K-means algorithm would yield.
"""
import codecademylib3_seaborn
import matplotlib.pyplot as plt
import numpy as np
from os.path import join, dirname, abspath
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data
y = iris.target
fignum = 1
# Plot the ground truthd
fig = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
for name, label in [('Zombies', 0),
('Programmers', 1),
('Vampires', 2)]:
ax.text3D(x[y == label, 3].mean(),
x[y == label, 0].mean(),
x[y == label, 2].mean() + 2, name,
horizontalalignment='center',
bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(x[:, 3], x[:, 0], x[:, 2], c=y, edgecolor='k')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('hates sunlight')
ax.set_ylabel('likes garlic')
ax.set_zlabel('canine teeth (in)')
ax.set_title('')
ax.dist = 12
#ADD CODE HERE
plt.show()