-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
270 lines (224 loc) · 11.9 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#to do: incluir summarywriter de tensorboard para iqf
#to do: ejecutar con crops de 512 y 1024 con menor batch size?
#to do: incluir patience para no depender del nEpochs
#to do: fix regressor scale i sharpness
#to do: poner una funcionalidad para hacer un target parameter 'optimo' en términos de rer, snr, etc (ya que el regressor se entrenó con onehot). se deberia probar este caso para downscalings mayores, seguramente mejoraría
#to do: freeze network?
import argparse, os, json
import sys
import torch
import math, random
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torchvision
import numpy as np
from datetime import datetime;
from metrics import PSNR, SSIM, FID
from models.msrn import MSRN_Upscale
from dataset_hr_lr import DatasetHR_LR
from torch.utils.data import DataLoader
from models.perceptual_loss import VGGPerceptualLoss
from iquaflow.quality_metrics.loss_regressor import argparse_regressor_loss, init_regressor_loss, apply_regressor_loss
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MSRN")
parser.add_argument("--trainid", default=None, type=str, help="Training id to save tensorboard logs")
parser.add_argument("--batchSize", type=int, default=16, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=1500, help="number of epochs to train for")
parser.add_argument("--n_scale", type=int, default=2, help="Maximum upscaling, Default: 2")
parser.add_argument("--lr", type=float, default=0.001, help="Learning Rate. Default=1e-3")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--colorjitter", action="store_true", help="Use colorjitter?")
parser.add_argument("--add_noise", action="store_true", help="Use cuda?")
parser.add_argument("--vgg_loss", action="store_true", help="Use perceptual loss?")
parser.add_argument("--resume", action="store_true", help="take last epoch available")
parser.add_argument("--threads", type=int, default=0, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--start_epoch", type=int, default=0, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--step", type=int, default=50, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=500")
parser.add_argument("--gpus", default="1", type=str, help="gpu ids (default: 0)")
parser.add_argument("--seed", default="12345", type=str, help="random seed")
parser.add_argument("--path_out", default="msrn/experiment/", type=str, help="path output")
parser.add_argument("--trainds_input", default="test_datasets/AerialImageDataset/train/images", type=str, help="path input training")
parser.add_argument("--valds_input", default="test_datasets/AerialImageDataset/test/images", type=str, help="path input val")
parser.add_argument("--crop_size", type=int, default=512, help="Crop size")
parser.add_argument("--nockpt", action="store_true", help="Flag to not save checkpoint")
parser.add_argument("--saveimgs", action="store_true", help="Save images flag")
parser = argparse_regressor_loss(parser)
class noiseLayer_normal(nn.Module):
def __init__(self, noise_percentage, mean=0, std=0.2):
super(noiseLayer_normal, self).__init__()
self.n_scale = noise_percentage
self.mean=mean
self.std=std
def forward(self, x):
if self.training:
noise_tensor = torch.normal(self.mean, self.std, size=x.size()).to(x.get_device())
x = x + noise_tensor * self.n_scale
mask_high = (x > 1.0)
mask_neg = (x < 0.0)
x[mask_high] = 1
x[mask_neg] = 0
return x
def main():
global opt, model
opt = parser.parse_args()
os.makedirs(opt.path_out, exist_ok=True)
tt = datetime.now()
ttdate = tt.strftime("%m-%d-%Y_%H:%M:%S")
if opt.trainid == None:
opt.trainid = "run_"+ttdate
path_logs = os.path.join(opt.path_out,opt.trainid)
path_checkpoints = os.path.join(path_logs, "model_checkpoint_"+opt.trainid)
os.makedirs(path_logs, exist_ok=True)
os.makedirs(path_checkpoints, exist_ok=True)
writer = SummaryWriter(path_logs)
with open(os.path.join(path_logs,'config.txt'), 'w') as f: #save argparse params config in text
json.dump(opt.__dict__,f,indent=2)
print(opt)
cuda = opt.cuda
if cuda:
print("=> use gpu id: '{}'".format(opt.gpus))
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
torch.cuda.empty_cache()
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print("===> Loading datasets")
train_set = DatasetHR_LR("training", crop_size=(opt.crop_size,opt.crop_size), apply_color_jitter=opt.colorjitter, input_path=opt.trainds_input)
validation_set = DatasetHR_LR("validation", crop_size=(opt.crop_size,opt.crop_size), input_path=opt.valds_input)
dataloaders ={
'training': DataLoader(dataset=train_set, num_workers=opt.threads, \
batch_size=opt.batchSize, shuffle=True),
'validation': DataLoader(dataset=validation_set, num_workers=opt.threads, \
batch_size=opt.batchSize, shuffle=False)}
print("===> Building model")
model = MSRN_Upscale(n_scale=opt.n_scale)
# pretrained
criterion = nn.L1Loss(reduction='none')
print("INIT PIXEL SHUFFLE!!")
model._init_pixel_shuffle()
if opt.vgg_loss:
global perceptual_loss
perceptual_loss = VGGPerceptualLoss()
perceptual_loss.eval()
perceptual_loss.cuda()
print("Using perceptual loss")
if opt.regressor_loss is not None:
global quality_metric
global quality_metric_criterion
quality_metric , quality_metric_criterion = init_regressor_loss(opt)
print("Using regressor loss")
print("===> Setting GPU")
if cuda:
model = model.cuda()
criterion = criterion.cuda()
# optionally resume from a checkpoint
if opt.resume:
list_epochs = [int(f.split('.')[0].split('_')[-1]) for f in os.listdir(path_checkpoints)]
list_epochs.sort()
last_epoch = list_epochs[-1]
print(" resume from ", last_epoch)
weights = torch.load(os.path.join(path_checkpoints, f"model_epoch_{last_epoch}.pth"))
model.load_state_dict(weights["model"].state_dict())
opt.start_epoch = weights["epoch"] + 1
# for name,param in model.named_parameters():
# param.requires_grad = False
# if 'conv_up' in name:
# param.requires_grad = True
# if 'conv_output' in name:
# param.requires_grad = True
for name,param in model.named_parameters():
print(name, param.requires_grad)
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
for mode in ['training', 'validation']:
train(mode, dataloaders, optimizer, model, criterion, epoch, writer)
if (mode == 'training') & (opt.nockpt != True):
save_checkpoint(model, epoch, path_checkpoints)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(mode, dataloader, optimizer, model, criterion, epoch, writer):
metric_psnr = PSNR()
metric_ssim = SSIM()
metric_fid = FID()
# lr = adjust_learning_rate(optimizer, epoch-1)
# print("learning rate", lr)
# for param_group in optimizer.param_groups:
# param_group["lr"] = lr
print("{}\t Epoch={}, lr={}".format(mode, epoch, optimizer.param_groups[0]["lr"]))
model.train()
if mode=='validation':
model.eval()
torch.no_grad()
torch.set_grad_enabled(False)
else:
torch.enable_grad()
torch.set_grad_enabled(True)
for iteration, batch in enumerate(dataloader[mode], 1):
img_lr, img_hr = batch
if opt.cuda:
img_lr = img_lr.cuda()
img_hr = img_hr.cuda()
if opt.add_noise:
scale_noise = np.random.choice(np.arange(0.05, 0.2, 0.01))
add_noise = noiseLayer_normal(scale_noise, mean=0, std=0.2)
img_lr = add_noise(img_lr)
output = model(img_lr)
if img_hr.shape != output.shape:
output = torch.nn.functional.interpolate(output,size=(img_hr.shape[2],img_hr.shape[3]), mode='bilinear')
loss_spatial = criterion(img_hr, output)
loss = torch.mean(loss_spatial)
if opt.vgg_loss:
vgg_loss,_ = perceptual_loss(output, img_hr)
loss = loss + 10*vgg_loss
if opt.regressor_loss is not None:
regressor_loss, img_reg, pred_reg = apply_regressor_loss(img_hr,output,quality_metric,quality_metric_criterion,opt,loss,loss_spatial)
loss = loss + regressor_loss
#Metrics
psnr = metric_psnr(img_hr, output)
ssim = metric_ssim(img_hr, output)
fid = metric_fid(img_hr, output)
if mode=='training':
optimizer.zero_grad()
loss.backward()
optimizer.step()
grid_lr = torchvision.utils.make_grid(img_lr)[[2, 1, 0],...]
grid_hr = torchvision.utils.make_grid(img_hr)[[2, 1, 0],...]
grid_pred = torchvision.utils.make_grid(output)[[2, 1, 0],...]
#if iteration%10 == 0:
print("===>{}\tEpoch[{}]({}/{}): Loss: {:.5} \t PSNR: {:.5} \t SSIM: {:.5} \t FID: {:.5}".format(mode, epoch, iteration, len(dataloader[mode]), loss.item(), psnr.item(), ssim.item(), fid.item()))
writer.add_scalar(f'{mode}/LOSS/', loss.item(), epoch*len(dataloader[mode])+iteration)
writer.add_scalar(f'{mode}/PSNR', psnr.item(), epoch*len(dataloader[mode])+iteration)
writer.add_scalar(f'{mode}/SSIM', ssim.item(), epoch*len(dataloader[mode])+iteration)
writer.add_scalar(f'{mode}/FID', fid.item(), epoch*len(dataloader[mode])+iteration)
if opt.saveimgs == True:
writer.add_image(f'{mode}/lr', grid_lr, iteration)
writer.add_image(f'{mode}/hr', grid_hr, iteration)
writer.add_image(f'{mode}/pred', grid_pred, iteration)
if opt.regressor_loss is not None:
writer.add_scalar(f'{mode}/REG_LOSS_{type(quality_metric_criterion).__name__}/', regressor_loss.item(), epoch*len(dataloader[mode])+iteration)
writer.add_scalar(f'{mode}/LOSS-REG_LOSS_{type(quality_metric_criterion).__name__}/', (loss-regressor_loss).item(), epoch*len(dataloader[mode])+iteration)
for i in range(len(pred_reg)):
writer.add_histogram(f'{mode}/REG_pred_{opt.regressor_loss}/', quality_metric.regressor.yclasses[opt.regressor_loss][torch.argmax(pred_reg, dim=1)[i].item()], epoch*len(dataloader[mode])+iteration)
writer.add_histogram(f'{mode}/REG_HR_{opt.regressor_loss}/', quality_metric.regressor.yclasses[opt.regressor_loss][torch.argmax(img_reg, dim=1)[i].item()], epoch*len(dataloader[mode])+iteration)
def save_checkpoint(model, epoch, path_checkpoints):
os.makedirs(path_checkpoints, exist_ok=True)
model_out_path = os.path.join(path_checkpoints + f"model_epoch_{epoch}.pth".format(epoch))
state = {"epoch": epoch ,"model": model}
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
old_checkpoint = os.path.join(path_checkpoints + f"model_epoch_{epoch-1}.pth".format(epoch-1))
if os.path.exists(old_checkpoint):
os.remove(old_checkpoint)
print("Removed old checkpoint")
if __name__ == "__main__":
main()