-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup.py
58 lines (52 loc) · 2.25 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# Copyright 2019-2021 Daytum
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from setuptools import setup, find_packages
with open("README.md", "r") as fh:
long_description = fh.read()
setup(
name='daytum-data',
version='0.2.14',
author="John T. Foster",
author_email="john@daytum.io",
description="Intake data package for Daytum classes",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/daytum/intake-data",
packages=find_packages(),
package_data={'': ['*.yaml']},
include_package_data=True,
install_requires=['intake>=0.5.5', 'intake-sql', 'psycopg2-binary'],
zip_safe=False,
entry_points={
'intake.catalogs': [
'wells=daytum_cat:wells',
'production=daytum_cat:production',
'petrophysical=daytum_cat:petrophysical',
'siesmic=daytum_cat:siesmic',
'AI_grid=daytum_cat:AI_grid',
'poro_perm=daytum_cat:poro_perm',
'MV_2D_200wells=daytum_cat:MV_2D_200wells',
'unconv_MV=daytum_cat:unconv_MV',
'unconv_MV_v2=daytum_cat:unconv_MV_v2',
'unconv_MV_v4=daytum_cat:unconv_MV_v4',
'sample_data_biased=daytum_cat:sample_data_biased',
'sample_data_MV_biased=daytum_cat:sample_data_MV_biased',
'sample_data=daytum_cat:sample_data',
'sample_data_12=daytum_cat:sample_data_12',
'porosity_1D=daytum_cat:porosity_1D',
'nonlinear_facies_v1=daytum_cat:nonlinear_facies_v1',
'nonlinear_facies_v2=daytum_cat:nonlinear_facies_v2',
'random_parabola=daytum_cat:random_parabola',
'stochastic_poro_perm=daytum_cat:stochastic_poro_perm'
]
}
)