-
Notifications
You must be signed in to change notification settings - Fork 417
/
Copy pathpartial.js
64 lines (57 loc) · 2.62 KB
/
partial.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// The arguments to this function are passed on the left
function partialLeft(f, ...outerArgs) {
return function(...innerArgs) { // Return this function
let args = [...outerArgs, ...innerArgs]; // Build the argument list
return f.apply(this, args); // Then invoke f with it
};
}
// The arguments to this function are passed on the right
function partialRight(f, ...outerArgs) {
return function(...innerArgs) { // Return this function
let args = [...innerArgs, ...outerArgs]; // Build the argument list
return f.apply(this, args); // Then invoke f with it
};
}
// The arguments to this function serve as a template. Undefined values
// in the argument list are filled in with values from the inner set.
function partial(f, ...outerArgs) {
return function(...innerArgs) {
let args = [...outerArgs]; // local copy of outer args template
let innerIndex=0; // which inner arg is next
// Loop through the args, filling in undefined values from inner args
for(let i = 0; i < args.length; i++) {
if (args[i] === undefined) args[i] = innerArgs[innerIndex++];
}
// Now append any remaining inner arguments
args.push(...innerArgs.slice(innerIndex));
return f.apply(this, args);
};
}
// Here is a function with three arguments
const f = function(x,y,z) { return x * (y - z); };
// Notice how these three partial applications differ
partialLeft(f, 2)(3,4) // => -2: Bind first argument: 2 * (3 - 4)
partialRight(f, 2)(3,4) // => 6: Bind last argument: 3 * (4 - 2)
partial(f, undefined, 2)(3,4) // => -6: Bind middle argument: 3 * (2 - 4)
const increment = partialLeft(sum, 1);
const cuberoot = partialRight(Math.pow, 1/3);
cuberoot(increment(26)) // => 3
const not = partialLeft(compose, x => !x);
const even = x => x % 2 === 0;
const odd = not(even);
const isNumber = not(isNaN);
odd(3) && isNumber(2) // => true
// sum() and square() functions are defined above. Here are some more:
const product = (x,y) => x*y;
const neg = partial(product, -1);
const sqrt = partial(Math.pow, undefined, .5);
const reciprocal = partial(Math.pow, undefined, neg(1));
// Now compute the mean and standard deviation.
let data = [1,1,3,5,5]; // Our data
let mean = product(reduce(data, sum), reciprocal(data.length));
let stddev = sqrt(product(reduce(map(data,
compose(square,
partial(sum, neg(mean)))),
sum),
reciprocal(sum(data.length,neg(1)))));
[mean, stddev] // => [3, 2]