This repository has been archived by the owner on Sep 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
78 lines (66 loc) · 2.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import multiprocessing
import tensorflow as tf
print('Number of CPU count: ', multiprocessing.cpu_count())
tf.config.threading.set_inter_op_parallelism_threads(multiprocessing.cpu_count())
from models import count_params
from utils.args_parser import solve_args
args = solve_args(multi_worker_strategy=True)
import os, time, json, csv
from pathlib import Path
import numpy as np
from datasets import get_dataset
from trainers import get_trainer
def save_log(history, val_metric: str='val_loss'):
logs = {
'config': vars(args),
'history': history,
}
if val_metric == 'val_loss':
logs['best_acc'] = min(history[val_metric])
else:
logs['best_acc'] = max(history[val_metric])
print('Best score: ', logs['best_acc'])
record = {
'Complete Time': time.ctime(),
'Model':args.model,
'Dataset':args.dataset,
'Embed size':args.embed_size,
'Num block': args.num_blocks,
'Best Score': logs['best_acc'],
'Params': count_params(args),
'args': json.dumps(vars(args))
}
dir_path = os.path.dirname(os.path.realpath(__file__))
record_csv = dir_path + f'/logs/0-Record.csv'
Path(record_csv).touch()
with open(record_csv, 'r') as f:
rows = list(csv.DictReader(f))
with open(record_csv, 'w') as f:
writer = csv.DictWriter(f, record.keys())
writer.writeheader()
for row in rows:
writer.writerow(row)
writer.writerow(record)
print('0-Record.csv updated')
def main(args):
# Set random seeds
np.random.seed(42)
tf.random.set_seed(42)
print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print("GPU is", "available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")
dataset = get_dataset(args.dataset)
trainer = get_trainer(dataset.getTask())
fitting = trainer.train(args, dataset)
if args.distributed_node_index == 0 or args.distributed_node_index == None:
if dataset.getTask() == 'classification':
if dataset.getOutputSize() > 2:
save_log(fitting.history, 'val_categorical_accuracy')
else:
save_log(fitting.history, 'val_binary_accuracy')
elif dataset.getTask() == 'ner':
save_log(fitting.history, 'val_f1_score')
else:
save_log(fitting.history)
if __name__ == '__main__':
main(args)