-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_WTA_linear_D_flow.jl
513 lines (436 loc) · 21.2 KB
/
plot_WTA_linear_D_flow.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
using PyPlot;
using Distributions;
using LaTeXStrings;
using Debug;
### Useful functions
## There are a number of alternative ways to calculate pdf and cdf inverse
dist_pdf(x) = pdf(Normal(0,1), x);
dist_cdf(x) = cdf(Normal(0,1), x);
# Note: inv_cdf(x) != 1.0 / cdf(Normal(0,1), x); #Not 1/fn but inverse function!!
include("inverse_cdf.jl"); #contains invnorm(), consider switching to invphi()
invphi(p) = sqrt(2) * erfinv(2 * p - 1.0) # variance 1 inverse phi function
#invphi(p) = 2.0 * erfinv(2 * p - 1.0) # variance 2 (1+1) inverse phi function
#include("plotting_assist_functions.jl");
#include("p_space_outcome_integrator_linear.jl");
#include("d_pos_space_outcome_integrator_linear.jl");
function setup_plot_wta_D_basic_variables(local_a = 0.5, local_c = -1)
## Plotting over D, D~ (+ve), and p optional
global use_plot_over_D_pos = false :: Bool;
global use_plot_over_D = false :: Bool;
global use_plot_over_p = true :: Bool;
# performance lines can be overlaid on plots in D-space to aid legibility
global use_overlay_performance_on_D = true :: Bool;
# simulation trajectories
global use_add_trajectories_to_plot = false :: Bool;
global sub_task_id_to_plot = 2 ::Int;
global use_plot_measured_proportion_correct = false :: Bool;
# forward Euler integrated trajectories
global use_overlay_p_Euler_trajectories = false :: Bool;
global use_overlay_D_pos_Euler_trajectories = false :: Bool;
# separate components of flow field
global use_include_learning_term_in_flow = true :: Bool;
global use_include_internal_bias_term_in_flow = true :: Bool;
global use_include_external_bias_term_in_flow = true :: Bool;
## Space over which vector field is calculated / plotted
global no_points = 15; #17; #25; #30;
#no_points = 10;
#no_y_points = no_points - 1;
# The no_y_points is to ensure that I plot the vector field in the right direction,
# julia is column major but matplot lib is row major which causes confusion!
# Set no_y_points = no_points - 1; to check if an error is thrown, no error means
# that the array access is correct.
global epsilon = 1e-7
global no_y_points = no_points;
global p = linspace(0+epsilon, 1-epsilon, no_points);
global p_y = linspace(0+epsilon, 1-epsilon, no_y_points);
global d_a = linspace(-3,3, no_points);
global d_b = linspace(-3,3, no_points);
global D_pos_scale = 100.0:: Float64;
global D_scale = 100.0 :: Float64;
global p_scale = 100.0:: Float64;
#debug vars
global Da = zeros(no_points);
global Db = zeros(no_y_points);
## Vector flow field variables
global deriv_p_a = zeros(no_points, no_y_points);
global deriv_p_b = zeros(no_points, no_y_points);
global p_deriv_D_a = zeros(no_points, no_y_points);
global p_deriv_D_b = zeros(no_points, no_y_points);
global deriv_D_a = zeros(no_points, no_y_points);
global deriv_D_b = zeros(no_points, no_y_points);
global deriv_D_a_pos = zeros(no_points, no_y_points);
global deriv_D_b_pos = zeros(no_points, no_y_points);
# Confusion parameter
global critic_dimensions = 2;
# perfect critic (overwritten if any of the following are active)
global C = eye(critic_dimensions)
#=
# equal mix critic
c = 1 / critic_dimensions; # currently equal confusion mix of all true critics
C = ones(critic_dimensions,critic_dimensions)
C *= c
A = eye(critic_dimensions) - C=#
# Probabilistic presentation of individual tasks critic
global internal_task_probability = ones(1,2) / 2; # relative probability of task 1 vs task 2
global prob_task = ones(1,critic_dimensions); # only used in critic now!
prob_task /= critic_dimensions;
prob_task = [0.25 0.25 0.5]; #[0.5 0.5]; #[0.25 0.25 0.25 0.25]; #[0.25 0.25 0.5];
#prob_task = [1, 0.001, 10, 10]; # manual tweaking
#prob_task /= sum(prob_task); # normalise, so I can use arbitrary units
# this influences Confustion matrix
for k = 1:critic_dimensions
C[k,:] = prob_task[1:critic_dimensions];
end
global A = eye(critic_dimensions) - C;
#A = eye(critic_dimensions);
if(local_c != -1)
global A = eye(critic_dimensions) - local_c;
end
# Input representation similarity parameter
global a = local_a; #0.5; #0.9;
global S = [1 a; a 1]
S /= S[1,1];
# Output correlation with +ve D
global O = [1; -1];
# Noise and external bias
global sigma = 1;
global R_ext = -0.95; #0.95;
#mu2 associated with less favourable output choice (be careful of this!)
global mu2 = zeros(2);
mu2[1] = 40; # 40Hz mu_2 for input task 1
mu2[2] = 40; # 40Hz mu_2 for input task 1
end
function calculate_linear_wta_model_flow_vectors()
for i = 1:no_points
for j = 1:(no_y_points)
#####
#
# Calculation of change of difference in outputs
#
# positive association in plotting of D with reward (use d_a as d_a^~)
if (use_plot_over_D_pos)
temp_a = 0;
temp_b = 0;
# Linear-WTA has mean output firing rates per task
# mu2 associated with less favourable output choice (be careful of this!)
# indexing of elements of mu refers to task (1 or 2, ie a or b)
mu1 = zeros(2);
mu1[1] = mu2[1] + d_a[i];
mu1[2] = mu2[2] + d_b[j];
if (use_include_learning_term_in_flow)
# *2 for R^{true} = (2p-1)
temp_a = [mu1[1]-mu2[1]] * cdf(Normal(0,sigma), (d_a[i])) + mu2[1] - ( (2 *cdf(Normal(0,sigma), (d_a[i])) - 1) * ( (mu1[1]-mu2[1]) * cdf(Normal(0,sigma), (d_a[i])) - mu2[1] ) ) :: Float64;
temp_b = [mu1[2]-mu2[2]] * cdf(Normal(0,sigma), (d_b[j])) + mu2[2] - ( (2 *cdf(Normal(0,sigma), (d_b[j])) - 1) * ( (mu1[2]-mu2[2]) * cdf(Normal(0,sigma), (d_b[j])) - mu2[2] ) ) :: Float64;
#print("$temp_a $temp_b\n");
# for some reason the WTA mathematical equation is becoming an array in julia
temp_a = temp_a[1];
temp_b = temp_b[1];
#print("$temp_a $temp_b\n");
end
if (use_include_internal_bias_term_in_flow)
# equations for R^{true} = (2p-1)
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i])) - mu2[1] ) * A[1,1] * (2 * cdf(Normal(0,sigma), (d_a[i])) - 1);
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i])) - mu2[1] ) * A[1,2] * (2 * cdf(Normal(0,sigma), (d_b[j])) - 1);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j])) - mu2[2] ) * A[2,1] * (2 * cdf(Normal(0,sigma), (d_a[i])) - 1);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j])) - mu2[2] ) * A[2,2] * (2 * cdf(Normal(0,sigma), (d_b[j])) - 1);
end
if (use_include_external_bias_term_in_flow)
# Bias from other tasks
if(critic_dimensions > 2)
for(k = 3:critic_dimensions)
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i])) - mu2[1] ) * (A[1,k] * R_ext);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j])) - mu2[2] ) * (A[1,k] * R_ext);
end
end
end
# Multiply by probability of occurence of each task
temp_a *= internal_task_probability[1]; #prob_task[1];
temp_b *= internal_task_probability[2]; #prob_task[2];
# putting it all together
deriv_D_a_pos[i,j] = ( O[1] * S[1,1] * temp_a + O[2] * S[1,2] * temp_b );
deriv_D_b_pos[i,j] = ( O[1] * S[2,1] * temp_a + O[2] * S[2,2] * temp_b );
# multiply again by output encoding to give +ve D for success representation
deriv_D_a_pos[i,j] *= O[1];
deriv_D_b_pos[i,j] *= O[2];
end
######
#
# no correction for -ve association in plotting of D with reward (use d_a as d_a)
if (use_plot_over_D)
temp_a = 0;
temp_b = 0;
# Linear-WTA has mean output firing rates per task
# mu2 associated with less favourable output choice (be careful of this!)
# indexing of elements of mu refers to task (1 or 2, ie a or b)
mu1 = zeros(2);
mu1[1] = mu2[1] + d_a[i]*O[1];
mu1[2] = mu2[2] + d_b[j]*O[2];
if (use_include_learning_term_in_flow)
# *2 for R^{true} = (2p-1)
temp_a = [mu1[1]-mu2[1]] * cdf(Normal(0,sigma), (d_a[i]*O[1])) + mu2[1] - ( (2 *cdf(Normal(0,sigma), (d_a[i]*O[1])) - 1) * ( (mu1[1]-mu2[1]) * cdf(Normal(0,sigma), (d_a[i]*O[1])) - mu2[1] ) ) :: Float64;
temp_b = [mu1[2]-mu2[2]] * cdf(Normal(0,sigma), (d_b[j]*O[2])) + mu2[2] - ( (2 *cdf(Normal(0,sigma), (d_b[j]*O[2])) - 1) * ( (mu1[2]-mu2[2]) * cdf(Normal(0,sigma), (d_b[j]*O[2])) - mu2[2] ) ) :: Float64;
#print("$temp_a $temp_b\n");
# for some reason the WTA mathematical equation is becoming an array in julia
temp_a = temp_a[1];
temp_b = temp_b[1];
#print("$temp_a $temp_b\n");
end
if (use_include_internal_bias_term_in_flow)
# equations for R^{true} = (2p-1)
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i]*O[1])) - mu2[1] ) * A[1,1] * (2 * cdf(Normal(0,sigma), (d_a[i]*O[1])) - 1);
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i]*O[1])) - mu2[1] ) * A[1,2] * (2 * cdf(Normal(0,sigma), (d_b[j]*O[2])) - 1);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j]*O[2])) - mu2[2] ) * A[2,1] * (2 * cdf(Normal(0,sigma), (d_a[i]*O[1])) - 1);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j]*O[2])) - mu2[2] ) * A[2,2] * (2 * cdf(Normal(0,sigma), (d_b[j]*O[2])) - 1);
end
if (use_include_external_bias_term_in_flow)
# Bias from other tasks
if(critic_dimensions > 2)
for(k = 3:critic_dimensions)
temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (d_a[i]*O[1])) - mu2[1] ) * (A[1,k] * R_ext);
temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (d_b[j]*O[2])) - mu2[2] ) * (A[1,k] * R_ext);
end
end
end
# Multiply by probability of occurence of each task
temp_a *= internal_task_probability[1]; #prob_task[1];
temp_b *= internal_task_probability[2]; #prob_task[2];
#debug_str = string(typeof(temp_a))
#print("$debug_str\n");
# putting it all together
deriv_D_a[i,j] = ( O[1] * S[1,1] * temp_a + O[2] * S[1,2] * temp_b );
deriv_D_b[i,j] = ( O[1] * S[2,1] * temp_a + O[2] * S[2,2] * temp_b );
end
#####
#
# Calculation of change of probability of outcome
#
if (use_plot_over_p)
Da[i] = invphi(p[i]);
Db[j] = invphi(p_y[j]);
p_temp_a = 0;
p_temp_b = 0;
# Linear-WTA has mean output firing rates per task
# mu2 associated with less favourable output choice (be careful of this!)
# indexing of elements of mu refers to task (1 or 2, ie a or b)
mu1 = zeros(2);
mu1[1] = mu2[1] + Da[i];
mu1[2] = mu2[2] + Db[j];
if (use_include_learning_term_in_flow)
p_temp_a = [mu1[1]-mu2[1]] * cdf(Normal(0,sigma), (Da[i])) + mu2[1] - ( (2 *cdf(Normal(0,sigma), (Da[i])) - 1) * ( (mu1[1]-mu2[1]) * cdf(Normal(0,sigma), (Da[i])) - mu2[1] ) ) :: Float64;
p_temp_b = [mu1[2]-mu2[2]] * cdf(Normal(0,sigma), (Db[j])) + mu2[2] - ( (2 *cdf(Normal(0,sigma), (Db[j])) - 1) * ( (mu1[2]-mu2[2]) * cdf(Normal(0,sigma), (Db[j])) - mu2[2] ) ) :: Float64;
#print("$temp_a $temp_b\n");
# for some reason the WTA mathematical equation is becoming an array in julia
p_temp_a = p_temp_a[1];
p_temp_b = p_temp_b[1];
#print("$temp_a $temp_b\n");
end
if (use_include_internal_bias_term_in_flow)
# equations for R^{true} = (2p-1)
p_temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (Da[i])) - mu2[1] ) * A[1,1] * (2 * cdf(Normal(0,sigma), (Da[i])) - 1);
p_temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (Da[i])) - mu2[1] ) * A[1,2] * (2 * cdf(Normal(0,sigma), (Db[j])) - 1);
p_temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (Db[j])) - mu2[2] ) * A[2,1] * (2 * cdf(Normal(0,sigma), (Da[i])) - 1);
p_temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (Db[j])) - mu2[2] ) * A[2,2] * (2 * cdf(Normal(0,sigma), (Db[j])) - 1);
end
if (use_include_external_bias_term_in_flow)
# Bias from other tasks
if(critic_dimensions > 2)
for(k = 3:critic_dimensions)
p_temp_a += ( (mu1[1] + mu2[1]) * cdf(Normal(0,sigma), (Da[i])) - mu2[1] ) * (A[1,k] * R_ext);
p_temp_b += ( (mu1[2] + mu2[2]) * cdf(Normal(0,sigma), (Db[j])) - mu2[2] ) * (A[1,k] * R_ext);
#p_temp_a += Da[i] * (A[1,k] * R_ext);
#p_temp_b += Db[j] * (A[2,k] * R_ext);
end
end
end
# Multiply by probability of occurence of each task
p_temp_a *= internal_task_probability[1]; #prob_task[1];
p_temp_b *= internal_task_probability[2]; #prob_task[2];
# putting it all together
p_deriv_D_a[i,j] = (O[1] * S[1,1] * p_temp_a + O[2] * S[1,2] * p_temp_b);
p_deriv_D_b[i,j] = (O[1] * S[2,1] * p_temp_a + O[2] * S[2,2] * p_temp_b);
# we need to transform derivatives to D_pos space
p_deriv_D_a[i,j] *= O[1];
p_deriv_D_b[i,j] *= O[2];
# and we scale everything by the pdf of the underlying probability
deriv_p_a[i,j] = pdf(Normal(0,sigma), Da[i]) * p_deriv_D_a[i,j];
deriv_p_b[i,j] = pdf(Normal(0,sigma), Db[j]) * p_deriv_D_b[i,j];
end
end
end
end # end function calculate_linear_model_flow_vectors()
function plot_linear_wta_model_flow_vectors()
## Plotting
print("Plotting...\n")
filename_change = "unbounded_post"
filename_change = "binary_new"
#filename_change = "rescaled_new"
file_name_change = "blah"
filename_base = string("vector_field_", filename_change);
filename_quiver = string("quiver_",filename_base,".pdf")
filename_stream = string("stream_",filename_base,".pdf")
#figure();
#quiver(p,p,deriv_p_a', deriv_p_b');
#quiver(p,p_y,deriv_p_a', deriv_p_b');
#savefig(filename_quiver);
#figure();
#streamplot(p,p,deriv_p_a',deriv_p_b');
#streamplot(p,p_y,deriv_p_a',deriv_p_b')
#savefig(filename_stream);
if (use_plot_over_D_pos)
## Difference in positive outputs view
figure();
#streamplot(d_a,d_b,deriv_D_a',deriv_D_b');
quiver(d_a, d_b, deriv_D_a_pos', deriv_D_b_pos', units="width", scale=D_pos_scale);
xtxt = latexstring("D_1^+");
ytxt = latexstring("D_2^+");
xlabel(xtxt)
ylabel(ytxt) # L"D_2"
title("Similarity s=$a");
if (critic_dimensions > 2)
titletxt = latexstring();
title("Similarity s=$a, R_ext = $R_ext, no external processes = $(critic_dimensions-2)");
end
if ( use_add_trajectories_to_plot )
scalar_for_d_pos = 10.0 / sigma; # since sigma in simulation is 10 times sigma here
scalar_for_d_pos = 350.0;
for j = 1:no_subjects
local_prop_sub_1_correct = zeros(no_blocks_in_experiment);
local_prop_sub_2_correct = zeros(no_blocks_in_experiment);
for i = 1:no_blocks_in_experiment
#scatter(latest_experiment_results.subjects_task[j,sub_task_id].blocks[i].proportion_task_correct[1], latest_experiment_results.subjects_task[j,sub_task_id].blocks[i].proportion_task_correct[2], marker="o", c="c")
local_prop_sub_1_correct[i] = (exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[i].noise_free_positive_output[sub_task_id_to_plot,1]) / scalar_for_d_pos;
local_prop_sub_2_correct[i] = (exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[i].noise_free_positive_output[sub_task_id_to_plot,2]) / scalar_for_d_pos;
end
plot(local_prop_sub_1_correct, local_prop_sub_2_correct, "r", zorder=1)
#print("",local_prop_sub_1_correct, local_prop_sub_2_correct, "\n-----\n")
end
for j = 1:no_subjects
for i = 1:no_blocks_in_experiment
# start point
scatter(exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[1].noise_free_positive_output[sub_task_id_to_plot,1] / scalar_for_d_pos, exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[1].noise_free_positive_output[sub_task_id_to_plot,2] / scalar_for_d_pos, marker="s", c="r", s=40, zorder=2)
# end point
scatter(exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[end].noise_free_positive_output[sub_task_id_to_plot,1] /scalar_for_d_pos, exp_results[1].subjects_task[j,sub_task_id_to_plot].blocks[end].noise_free_positive_output[sub_task_id_to_plot,2] / scalar_for_d_pos, marker="D", c="g", s=60, zorder=3)
end
end
end
if ( use_overlay_performance_on_D )
overlay_level_80 = invphi(0.8);
overlay_level_90 = invphi(0.9);
overlay_level_95 = invphi(0.95);
overlay_level_99 = invphi(0.99);
performance_overlay = ones(no_points);
plot(performance_overlay * overlay_level_80, d_a, linewidth=2, c="c", zorder=0);
#plot(performance_overlay * overlay_level_90, d_a, linewidth=2, c="m", zorder=0);
plot(performance_overlay * overlay_level_95, d_a, linewidth=2, c="y", zorder=0);
plot(performance_overlay * overlay_level_99, d_a, linewidth=2, c="g", zorder=0);
plot(-performance_overlay * overlay_level_80, d_a, linewidth=2, c="c", zorder=0);
#plot(-performance_overlay * overlay_level_90, d_a, linewidth=2, c="m", zorder=0);
plot(-performance_overlay * overlay_level_95, d_a, linewidth=2, c="y", zorder=0);
plot(-performance_overlay * overlay_level_99, d_a, linewidth=2, c="g", zorder=0);
plot(d_a, performance_overlay * overlay_level_80, linewidth=2, c="c", zorder=0);
#plot(d_a, performance_overlay * overlay_level_90, linewidth=2, c="m", zorder=0);
plot(d_a, performance_overlay * overlay_level_95, linewidth=2, c="y", zorder=0);
plot(d_a, performance_overlay * overlay_level_99, linewidth=2, c="g", zorder=0);
plot(d_a, -performance_overlay * overlay_level_80, linewidth=2, c="c", zorder=0);
#plot(d_a, -performance_overlay * overlay_level_90, linewidth=2, c="m", zorder=0);
plot(d_a, -performance_overlay * overlay_level_95, linewidth=2, c="y", zorder=0);
plot(d_a, -performance_overlay * overlay_level_99, linewidth=2, c="g", zorder=0);
#plot(d_a, Db_null);
## x=0 and y=0 lines for visual inspection
origin = zeros(no_points);
#origin_space = linspace(-100,100,no_points);
plot(origin, d_a, linewidth=1, c="0.75", zorder=-1);
plot(d_b, origin, linewidth=1, c="0.75", zorder=-1);
end
if (use_overlay_D_pos_Euler_trajectories)
D_pos_trajectories = calculate_D_pos_trajectories();
plot_D_pos_space_trajectories(D_pos_trajectories)
#report_end_point_results(p_trajectories)
axis([-5,5,-5,5])
end
end
if (use_plot_over_D)
## Difference in outputs view
figure();
#streamplot(d_a,d_b,deriv_D_a',deriv_D_b');
quiver(d_a,d_b,deriv_D_a',deriv_D_b', units="width", scale=D_scale);
xtxt = latexstring("D_1");
ytxt = latexstring("D_2");
xlabel(xtxt)
ylabel(ytxt) # L"D_2"
title("Similarity s=$a");
if (critic_dimensions > 2)
titletxt = latexstring();
title("Similarity s=$a, R_ext = $R_ext, no external processes = $(critic_dimensions-2)");
end
if ( use_overlay_performance_on_D )
overlay_level_80 = invphi(0.8);
overlay_level_90 = invphi(0.9);
overlay_level_95 = invphi(0.95);
overlay_level_99 = invphi(0.99);
performance_overlay = ones(no_points);
plot(performance_overlay * overlay_level_80, d_a, linewidth=2, c="c", zorder=0);
#plot(performance_overlay * overlay_level_90, d_a, linewidth=2, c="m", zorder=0);
plot(performance_overlay * overlay_level_95, d_a, linewidth=2, c="y", zorder=0);
plot(performance_overlay * overlay_level_99, d_a, linewidth=2, c="g", zorder=0);
plot(-performance_overlay * overlay_level_80, d_a, linewidth=2, c="c", zorder=0);
#plot(-performance_overlay * overlay_level_90, d_a, linewidth=2, c="m", zorder=0);
plot(-performance_overlay * overlay_level_95, d_a, linewidth=2, c="y", zorder=0);
plot(-performance_overlay * overlay_level_99, d_a, linewidth=2, c="g", zorder=0);
plot(d_a, performance_overlay * overlay_level_80, linewidth=2, c="c", zorder=0);
#plot(d_a, performance_overlay * overlay_level_90, linewidth=2, c="m", zorder=0);
plot(d_a, performance_overlay * overlay_level_95, linewidth=2, c="y", zorder=0);
plot(d_a, performance_overlay * overlay_level_99, linewidth=2, c="g", zorder=0);
plot(d_a, -performance_overlay * overlay_level_80, linewidth=2, c="c", zorder=0);
#plot(d_a, -performance_overlay * overlay_level_90, linewidth=2, c="m", zorder=0);
plot(d_a, -performance_overlay * overlay_level_95, linewidth=2, c="y", zorder=0);
plot(d_a, -performance_overlay * overlay_level_99, linewidth=2, c="g", zorder=0);
#plot(d_a, Db_null);
## x=0 and y=0 lines for visual inspection
origin = zeros(no_points);
#origin_space = linspace(-100,100,no_points);
plot(origin, d_a, linewidth=1, c="0.75", zorder=-1);
plot(d_b, origin, linewidth=1, c="0.75", zorder=-1);
end
end
if (use_plot_over_p)
## probabilistic view
figure(figsize=(5,5));
##streamplot(d_a,d_b,deriv_D_a',deriv_D_b');
quiver(p,p_y,deriv_p_a',deriv_p_b', units="width", scale=p_scale);
xtxt = latexstring("p_1");
ytxt = latexstring("p_2");
xlabel(xtxt)
ylabel(ytxt) # L"D_2"
aa = abs(a);
aa = a;
title("Similarity s=$aa");
if (critic_dimensions > 2)
titletxt = latexstring();
title("Similarity s=$aa, R_ext = $R_ext, no external processes = $(critic_dimensions-2)");
end
if (use_overlay_p_Euler_trajectories)
p_trajectories = calculate_p_trajectories();
plot_p_space_trajectories(p_trajectories)
report_end_point_results(p_trajectories)
end
if (use_overlay_D_pos_Euler_trajectories)
D_pos_trajectories = calculate_D_pos_trajectories();
plot_D_pos_space_trajectories_in_p_space(D_pos_trajectories)
#report_end_point_results(p_trajectories)
end
end
if (use_plot_over_p && use_add_trajectories_to_plot)
if (critic_dimensions == 2)
add_trajectories_to_linear_p_plot(exp_results[1],sub_task_id_to_plot);
elseif (critic_dimensions == 4)
#TODO: plotting wrong trajectories here
add_biased_trajectories_to_linear_p_plot(exp_results[1],sub_task_id_to_plot);
end
end
end # end function plot_linear_model_flow_vectors()
function run_linear_wta_model_flow(local_similarity=0.7)
setup_plot_wta_D_basic_variables(local_similarity);
calculate_linear_wta_model_flow_vectors();
plot_linear_wta_model_flow_vectors();
end