-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackprop_two_layer.jl
394 lines (300 loc) · 11.2 KB
/
backprop_two_layer.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# module backprop_two_layer
using PyPlot
using Distributions
export update_critic_representation, get_reward_prediction, initialise_critic_parameters
type Critic_Representation
W1 :: Array{Float64,2}
W2 :: Array{Float64,2}
alpha :: Array{Float64,1}
tau :: Array{Int64,1}
end
global my_critic = Critic_Representation(Array{Float64,2}(), Array{Float64,2}(), Array{Float64,1}(), Array{Int64,1}());
function initialise_critic_parameters()
global my_critic;
# srand(2); # use with care, it's being used elsewhere in my simulations
## Layer 1
W1 = ones(2,2) * 0.25;
stdev_weight_noise = 0.; #0.001;
weight_noise = rand(Normal(0,1),2,2) * stdev_weight_noise;
# weight_noise = zeros(2,2);
# weight_noise[1,1] = 0.001;
# weight_noise[1,2] = -0.001;
# weight_noise[2,1] = -0.001;
# weight_noise[2,2] = 0.001;
W1 += weight_noise;
## Layer 2
W2 = ones(2,1) / 2 #+ rand(Normal(0,1),2,1) * 0.001;
# Playing with difference in weight initialisation values
# W2[1] = 3;
# W2[2] = 0.3;
## Learning parameters
alpha = [1.; 1.];
tau = [500; 5];
tau = [500; 30];
tau = [4000; 20];
my_critic.W1 = W1;
my_critic.W2 = W2;
my_critic.alpha = alpha;
my_critic.tau = tau;
end
function initialise_critic_sim(no_trials::Int64, no_tasks=2::Int64)
srand(1);
task_sequence = zeros(Int, no_trials, 1);
if no_tasks == 2
for i = 1:no_trials
task_sequence[i] = (rand(Uniform(0,1)) < 0.5 ? 1 : 2);
end
else
for i = 1:no_trials
task_sequence[i] = 1;
end
end
initialise_critic_parameters();
W1 = my_critic.W1;
W2 = my_critic.W2;
return (task_sequence, W1, W2);
end
# __init__ = initialise_critic_parameters();
function get_inputs(task_id::Int)
x = zeros(Float64, 2, 1);
x[task_id] = 1.;
return x;
end
function get_output(x, W)
return (x' * W)' # + rand(Normal(0,1),2,1) * 0.01;
end
function get_output(x, W1, W2)
return (x' * W1 * W2) # + rand(Normal(0,1)) * 0.01;
end
function modify_W!(x, y, z, target, W1, W2, use_realistic_feedback::Bool=false, change_reward_range::Bool=false)
# alpha = [1.; 1.];
# tau = [500; 5];
# tau = [500; 30];
alpha = my_critic.alpha;
tau = my_critic.tau;
if change_reward_range
# convert reward from [-1,+1] to [0,1] internal representation (it's smoother)
target = (target / 2.) + 0.5;
end
if use_realistic_feedback
# use contingency to generate probabilistic feedback signal
probability_target = target;
feedback = ( rand(Uniform(0,1)) < probability_target ? 1 : 0);
# this code is for debugging, in the backprop host code it originally generated locally a
# feedback of {0,1}, in the sim we typically provide feedback of {-1,+1} so
# we're briefly going to generate that locally here... for debugging.
# feedback = ( rand(Uniform(0,1)) < probability_target ? 1 : -1);
# @show feedback
target = feedback;
end
# error = (1./tau) * (target - y);
# Backpropagation algorithm: two layers
# inputs x, middle y, output z
# W1 is inputs to middle layer weights
# W2 is middle to output layer weights
error = zeros(2,1);
error[1] = (1./tau[1]) * (target - z[1]);
error[2] = (1./tau[2]) * (target - z[1]);
δW1 = zeros(2,2);
# backprop gradient (assume linear transfer functions)
δW1[1,1] = x[1] * W2[1];
δW1[1,2] = x[1] * W2[2];
δW1[2,1] = x[2] * W2[1];
δW1[2,2] = x[2] * W2[2];
δW1 *= alpha[1] * error[1];
δW2 = alpha[2] * error[2] .* y;
for i = 1:2, j = 1:2
W1[i,j] += δW1[i,j];
end
W2[1] += δW2[1];
W2[2] += δW2[2];
# Playing with weight normalisation
# W1[:,1] = W1[:,1] / norm(W1[:,1]) # inputs to neuron 1 in layer 1
# W1[:,2] = W1[:,2] / norm(W1[:,2]) # inputs to neuron 2 in layer 1
#
# W2 = W2 ./ norm(W2)
# @show W
end
function update_critic_representation(task_id::Int, local_reward::Float64, change_reward_range::Bool=false) # later can make Int of local_reward
# needs access to x (from get_inputs(task_id)), W1, W2
x = get_inputs(task_id);
y = get_output(x, my_critic.W1);
z = get_output(x, my_critic.W1, my_critic.W2);
if change_reward_range
# convert reward from [-1,+1] to [0,1] internal representation (it's smoother)
local_reward = (local_reward / 2.) + 0.5;
end
modify_W!(x, y, z, local_reward, my_critic.W1, my_critic.W2, false);
end
function update_critic_representation(task_id::Int, local_reward::Int, change_reward_range::Bool=false)
# use the Float64 version of this function for now
update_critic_representation(task_id, float(local_reward), change_reward_range);
end
function get_reward_prediction(task_id::Int, change_reward_range::Bool=false)
# needs access to x (from get_inputs(task_id)) and W1, W2
x = get_inputs(task_id);
rp = get_output(x, my_critic.W1, my_critic.W2);
if change_reward_range
# convert to [-1,+1] scale
ret_val = (rp - 0.5) * 2;
else
ret_val = rp;
end
return ret_val;
end
function run_matrix(realistic_feedback::Bool=false, change_reward_range::Bool=false)
no_trials = 6000;
initial_contingency = [0.05; 0.8];
switch_point = 3000;
second_contingencies = [-0.7; 0.2];
(task_sequence, W1, W2) = initialise_critic_sim(no_trials);
outputs = zeros(no_trials, 1);
outputs_1 = zeros(no_trials,1);
outputs_2 = zeros(no_trials,1);
for i = 1:no_trials
x = get_inputs(task_sequence[i]);
y = get_output(x, W1);
z = get_output(x, W1, W2);
# actual performance on the desired task
outputs[i] = z[1];
# monitors of potential performance on the two underlying tasks
# ie. had I been asked to do task i how would I have done?
outputs_1[i] = get_output(get_inputs(1), W1, W2)[1];
outputs_2[i] = get_output(get_inputs(2), W1, W2)[1];
if i == switch_point
print("Switching contingencies\n");
end
if i < switch_point
modify_W!(x,y,z,initial_contingency[task_sequence[i]],W1,W2,realistic_feedback,change_reward_range);
# update_critic_representation(task_sequence[i], initial_contingency[task_sequence[i]], change_reward_range);
else
modify_W!(x,y,z,second_contingencies[task_sequence[i]],W1,W2,realistic_feedback,change_reward_range);
# update_critic_representation(task_sequence[i], second_contingencies[task_sequence[i]], change_reward_range);
end
@show W1 W2 task_sequence[i]
end
figure()
plot(linspace(1,no_trials,no_trials), outputs, "b", linewidth=3);
plot(linspace(1,no_trials,no_trials), outputs_1, "r", label="Task 1");
plot(linspace(1,no_trials,no_trials), outputs_2, "g", label="Task 2");
title("Contingencies {0.05,0.8} then {-0.7,0.2}. Two-layer using Backprop")
ylabel("abstract reward/performance unit")
xlabel("trial number")
savefig("backprop_two_layer.pdf")
end
function single_task_run_matrix(realistic_feedback::Bool=false)
no_trials = 6000;
initial_contingency = [0.8; 0.5];
switch_point = 3000;
second_contingencies = [0.5; 0.2];
(task_sequence, W1, W2) = initialise_critic_sim(no_trials, 1);
outputs = zeros(no_trials, 1);
outputs_1 = zeros(no_trials,1);
outputs_2 = zeros(no_trials,1);
for i = 1:no_trials
x = get_inputs(task_sequence[i]);
y = get_output(x, W1);
z = get_output(x, W1, W2);
# actual performance on the desired task
outputs[i] = z[1];
# monitors of potential performance on the two underlying tasks
# ie. had I been asked to do task i how would I have done?
outputs_1[i] = get_output(get_inputs(1), W1, W2)[1];
outputs_2[i] = get_output(get_inputs(2), W1, W2)[1];
if i == switch_point
print("Switching contingencies\n");
end
if i < switch_point
modify_W!(x,y,z,initial_contingency[task_sequence[i]],W1,W2,realistic_feedback);
else
modify_W!(x,y,z,second_contingencies[task_sequence[i]],W1,W2,realistic_feedback);
end
@show W1 W2 task_sequence[i]
end
figure()
plot(linspace(1,no_trials,no_trials), outputs, "b", linewidth=3);
plot(linspace(1,no_trials,no_trials), outputs_1, "r", label="Task 1");
# plot(linspace(1,no_trials,no_trials), outputs_2, "g", label="Task 2");
title("Single task. Contingencies 0.8 and 0.5. Two-layer using Backprop")
ylabel("abstract reward/performance unit")
xlabel("trial number")
legend()
savefig("backprop_two_layer_single_task.pdf")
end
function crossover_run_matrix(realistic_feedback::Bool=false)
no_trials = 8000;
initial_contingency = [0.8; 0.5];
switch_point = 3000;
second_contingencies = [0.3; 0.7];
(task_sequence, W1, W2) = initialise_critic_sim(no_trials);
outputs = zeros(no_trials, 1);
outputs_1 = zeros(no_trials,1);
outputs_2 = zeros(no_trials,1);
for i = 1:no_trials
x = get_inputs(task_sequence[i]);
y = get_output(x, W1);
z = get_output(x, W1, W2);
# actual performance on the desired task
outputs[i] = z[1];
# monitors of potential performance on the two underlying tasks
# ie. had I been asked to do task i how would I have done?
outputs_1[i] = get_output(get_inputs(1), W1, W2)[1];
outputs_2[i] = get_output(get_inputs(2), W1, W2)[1];
if i == switch_point
print("Switching contingencies\n");
end
if i < switch_point
modify_W!(x,y,z,initial_contingency[task_sequence[i]],W1,W2,realistic_feedback);
else
modify_W!(x,y,z,second_contingencies[task_sequence[i]],W1,W2,realistic_feedback);
end
@show W1 W2 task_sequence[i]
end
figure()
plot(linspace(1,no_trials,no_trials), outputs, "b", linewidth=3);
plot(linspace(1,no_trials,no_trials), outputs_1, "r", label="Task 1");
plot(linspace(1,no_trials,no_trials), outputs_2, "g", label="Task 2");
title("Contingencies {0.8,0.5} then {0.3,0.7}. Two-layer using Backprop")
ylabel("abstract reward/performance unit")
xlabel("trial number")
savefig("backprop_two_layer_crossover.pdf")
end
function reverse_run_matrix(realistic_feedback::Bool=false)
no_trials = 10000;
initial_contingency = [0.8; 0.5];
switch_point = 3000;
second_contingencies = [0.6; 0.6];
(task_sequence, W1, W2) = initialise_critic_sim(no_trials);
outputs = zeros(no_trials, 1);
outputs_1 = zeros(no_trials,1);
outputs_2 = zeros(no_trials,1);
for i = 1:no_trials
x = get_inputs(task_sequence[i]);
y = get_output(x, W1);
z = get_output(x, W1, W2);
# actual performance on the desired task
outputs[i] = z[1];
# monitors of potential performance on the two underlying tasks
# ie. had I been asked to do task i how would I have done?
outputs_1[i] = get_output(get_inputs(1), W1, W2)[1];
outputs_2[i] = get_output(get_inputs(2), W1, W2)[1];
if i == switch_point
print("Switching contingencies\n");
end
if i < switch_point
modify_W!(x,y,z,initial_contingency[task_sequence[i]],W1,W2,realistic_feedback);
else
modify_W!(x,y,z,second_contingencies[task_sequence[i]],W1,W2,realistic_feedback);
end
@show W1 W2 task_sequence[i]
end
figure()
plot(linspace(1,no_trials,no_trials), outputs, "b", linewidth=3);
plot(linspace(1,no_trials,no_trials), outputs_1, "r", label="Task 1");
plot(linspace(1,no_trials,no_trials), outputs_2, "g", label="Task 2");
title("Contingencies {0.8,0.5} then {0.6,0.6}. Two-layer using Backprop")
ylabel("abstract reward/performance unit")
xlabel("trial number")
savefig("backprop_two_layer_reverse.pdf")
end
# end # module backprop_two_layer