-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
169 lines (143 loc) · 7.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os, numpy as np
import data_utils as du
import tensorflow as tf
import constants as cs
#Step 1. Augment images and store them in the same folder : can be done now
#Step 2. Split all data into train, validation and test : can be done now
##train is further split into batches
#Step 3. Build neural net
## Architecture: inspired by alexnet
## input layer: 32x32x3 image
## conv1 layer 3x3x3x8 (zero padded,relu) output: 32x32x8
## conv2 layer 3x3x8x16 (zero padded,relu) output: 32x32x16
## pool1 layer 2x2 output output: 16x16x16
## conv3 layer 3x3x16x32 (zero padded,relu) output: 16x16x32
## pool2 layer 2x2 output: 8x8x32
## pool3 layer 2x2 output: 4x4x32
## flatten 4x4x32 -> 1x512
## fully connected1 layer: 4 relu output: 4 (512x4)
## output layer: 1 output neuron, no activation output: 1 (4x1)
## cost is mean-squared error
## this results in a total of 8089 parameters, 8028 weights and 61 biases
#Step 4. load batches : can be done now
## Load in images
## Get predictions y
#Step 5. train model
#Step 6. save model with tensorflow
##Write predict script to predict on camera feed
folders=[os.path.join('data/'+isDir) for isDir in os.listdir('data') if os.path.isdir('data/'+isDir)]
#print(folders)
#du.augment_and_save(folders) #WARNING: DO THIS ONLY ONCE, OR YOU WILL END UP WITH A VERY LARGE DATASET
#du.make_batches(folders,cs.num_batches) #DO ONLY ONCE
def get_mini_batch(x,y,mb_size):
for idx in range(0,y.shape[0],mb_size):
mb_x=x[idx:idx+mb_size,...]
mb_y=y[idx:idx+mb_size,:]
yield mb_x,mb_y
#define computational graph
if len(os.listdir('checkpoints'))<3:
restore_pretrained_model=False
weights={'conv1': tf.Variable(tf.truncated_normal([3,3,3,8],stddev=1/50.0),name='w_c1'),
'conv2': tf.Variable(tf.truncated_normal([3,3,8,16],stddev=1/50.0),name='w_c2'),
'conv3': tf.Variable(tf.truncated_normal([3,3,16,32],stddev=1/50.0),name='w_c3'),
'conv4': tf.Variable(tf.truncated_normal([3,3,32,64],stddev=1/50.0),name='w_c4'),
'fc1': tf.Variable(tf.truncated_normal([1024,64],stddev=1/50.0),name='w_fc1'),
'out': tf.Variable(tf.truncated_normal([64,cs.numdays],stddev=1/50.0),name='w_o')}
biases={'conv1': tf.Variable(tf.zeros([8]),name='b_c1'),
'conv2': tf.Variable(tf.zeros([16]),name='b_c2'),
'conv3': tf.Variable(tf.zeros([32]),name='b_c3'),
'conv4': tf.Variable(tf.zeros([64]),name='b_c4'),
'fc1': tf.Variable(tf.zeros([64]),name='b_fc1'),
'out': tf.Variable(tf.zeros([cs.numdays]),name='b_o')}
with tf.name_scope('inputs'):
inputs_ = tf.placeholder(tf.float32,[None,32,32,3],name='input_x')
y_ = tf.placeholder(tf.float32,[None,cs.numdays],name='input_y')
pkeep=tf.placeholder(tf.float32,name='dropout')
learning_rate=tf.placeholder(tf.float32,name='lr')
with tf.name_scope('conv1'):
conv1= tf.nn.conv2d(inputs_,weights['conv1'],strides=[1,1,1,1],padding='SAME')
conv1= tf.nn.bias_add(conv1, biases['conv1'])
conv1= tf.nn.relu(conv1)
conv1= tf.nn.dropout(conv1,keep_prob=pkeep)
with tf.name_scope('conv2'):
conv2= tf.nn.conv2d(conv1,weights['conv2'],strides=[1,2,2,1],padding='SAME')
conv2= tf.nn.bias_add(conv2,biases['conv2'])
conv2= tf.nn.relu(conv2)
with tf.name_scope('conv3'):
conv3= tf.nn.conv2d(conv2,weights['conv3'],strides=[1,2,2,1],padding='SAME')
conv3= tf.nn.bias_add(conv3, biases['conv3'])
conv3= tf.nn.relu(conv3)
conv3= tf.nn.dropout(conv3, keep_prob= pkeep)
with tf.name_scope('conv4'):
conv4= tf.nn.conv2d(conv3,weights['conv4'],strides=[1,2,2,1],padding='SAME')
conv4= tf.nn.bias_add(conv4, biases['conv4'])
conv4= tf.nn.relu(conv4)
conv4= tf.nn.dropout(conv4, keep_prob= pkeep)
with tf.name_scope('flatten'):
flatten=tf.reshape(conv4,[-1,1024])
with tf.name_scope('fc1'):
fc1= tf.add(tf.matmul(flatten,weights['fc1']),biases['fc1'])
with tf.name_scope('output'):
out= tf.add(tf.matmul(fc1,weights['out']),biases['out'])
out= tf.nn.softmax(out)
with tf.name_scope('cost'):
cost= tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out,labels=y_),name="cost_value")
with tf.name_scope('optimizer'):
optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate,name="my_optimizer").minimize(cost)
else:
restore_pretrained_model=True
with tf.Session() as sess:
if not restore_pretrained_model: #starting from scratch
saver = tf.train.Saver() #initialize saver
sess.run(tf.global_variables_initializer())
tf.add_to_collection('train_op', optimizer) #add optimizer to collection so that it can be restored later
writer = tf.summary.FileWriter('./graphs', sess.graph) #write graph
valid_x,valid_y= du.load_valid() #load validation set
for epoch in range(cs.epochs):
for batch_num in range(1,cs.num_batches+1):
batch_x,batch_y=du.load_batch(batch_num=batch_num)
for mb_x,mb_y in get_mini_batch(batch_x,batch_y,64):
lr=2e-2/batch_num #learning rate
feeds={inputs_:mb_x,y_:mb_y,pkeep: cs.dropout,learning_rate: lr}
train_loss,_ = sess.run([cost, optimizer],feed_dict=feeds)
print("Epoch: {}/{}, batch {}...".format(epoch+1, cs.epochs,batch_num),
"Training loss: {:.4f}".format(train_loss))
if batch_num%5==0:
#train_loss=sess.run(cost,feed_dict=feeds)
valid_loss=sess.run(cost,feed_dict={inputs_: valid_x, y_: valid_y, pkeep: 1.0})
print("Epoch: {}/{}, batch {}...".format(epoch+1, cs.epochs,batch_num),
"Validation loss: {:.4f}".format(valid_loss))
saver.save(sess,"checkpoints/epoch",global_step=cs.epochs)
writer.close()
else: #restore a previously trained model and train further
last_global_step=max([int(filename[6]) for filename in os.listdir('checkpoints') if 'meta' in filename])
saver=tf.train.import_meta_graph('checkpoints/epoch-'+str(last_global_step)+'.meta') #graph does not change
#print(last_global_step)
saver.restore(sess,tf.train.latest_checkpoint('./checkpoints/'))
print('Found pretrained model. Loaded latest checkpoint')
graph=tf.get_default_graph()
inputs_=graph.get_tensor_by_name("inputs/input_x:0")
y_= graph.get_tensor_by_name("inputs/input_y:0")
pkeep=graph.get_tensor_by_name("inputs/dropout:0")
learning_rate=graph.get_tensor_by_name("inputs/lr:0")
cost=graph.get_tensor_by_name("cost/cost_value:0")
#optimizer=graph.get_tensor_by_name("optimizer/Adam")
#optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate,name="my_optimizer").minimize(cost)
#sess.run(tf.global_variables_initializer())
optimizer=tf.get_collection('train_op')[0]
valid_x,valid_y= du.load_valid()
for epoch in range(cs.epochs):
for batch_num in range(1,cs.num_batches+1):
batch_x,batch_y=du.load_batch(batch_num=batch_num)
lr=cs.learning_rate/epoch
for mb_x,mb_y in get_mini_batch(batch_x,batch_y,64):
feeds={inputs_:mb_x,y_:mb_y,pkeep: cs.dropout,learning_rate: lr}
train_loss,_ = sess.run([cost,optimizer],feed_dict=feeds)
print("Epoch: {}/{}, batch {}...".format(epoch+1, cs.epochs,batch_num),
"Training loss: {:.4f}".format(train_loss))
if batch_num%5==0:
#train_loss=sess.run(cost,feed_dict=feeds)
valid_loss=sess.run(cost,feed_dict={inputs_: valid_x, y_: valid_y, pkeep: 1.0})
print("Epoch: {}/{}, batch {}...".format(epoch+1, cs.epochs,batch_num),
"Validation loss: {:.4f}".format(valid_loss))
saver.save(sess,"checkpoints/epoch",global_step=last_global_step+cs.epochs)