Skip to content

Latest commit

 

History

History
587 lines (509 loc) · 30.1 KB

README.md

File metadata and controls

587 lines (509 loc) · 30.1 KB

SPL-to-PySpark transpiler

codecov lines of code

Cybersecurity practitioners have plenty of ETL or alerting rules coded in Search Processing Language (SPL) to run within some of the industry-standard SIEM environments. In reality, only the most common commands are used the most by SIEM practitioners, and it’s possible to automatically translate them into corresponding PySpark Structured Streaming or, even later - Spark SQL so that we get the same results on the same datasets with the same query from both SIEM and Databricks. It’s also possible to use this tooling to teach PySpark equivalents to SIEM practitioners to accelerate their time-to-comfort level with Databricks Lakehouse foundations.

.

Queries could be manually translated, requiring expert knowledge of SIEM and PySpark (or SQL). It takes a week to translate a dozen queries but may take months to translate hundreds of those. With this cross-compiler, we can cut down migration time from months to weeks or even days and significantly increase the speed of learning for the new Databricks practitioners. Some tools like https://uncoder.io/ or https://github.com/SigmaHQ/sigma translate SIEM into other formats, but none exist so far that translates a vast amount of queries to PySpark or Spark SQL.

Lakehouse is especially useful for historical data analysis where only shallow history of records would be kept on SIEM-based architecture. The ability to translate SQL or Spark-based queries on entire history and combine these queries with advanced analytics capabilities offer cyber analysts a more holistic view of security anomalies, and more accurate detection of advanced persistent threats more full history is needed.

Language support

There's basic support for the most used commands like addtotals, bin, collect, convert, dedup, eval, eventstats, fields, fillnull, format, head, inputlookup, join, lookup, makeresults, map, multisearch, mvcombine, mvexpand, regex, rename, return, rex, search, sort, stats, streamstats, table, where.

There's also basic support for functions like auto(), cidr_match(), coalesce(), count(), ctime(), earliest(), if(), isnotnull(), latest(), len(), like(), lower(), max(), memk(), min(), mvappend(), mvcount(), mvfilter(), mvindex(), none(), null(), num(), replace(), rmcomma(), rmunit(), round(), strftime(), substr(), sum(), term(), values().

Usage

To use transpiler, please create a Databricks Cluster with DBR 11.3 LTS, otherwise functionality won't work. Once the cluster is created, navigate to Libraries tab and click on Install new, pick Maven, in coordinates field please enter com.databricks.labs:transpiler:0.4.0, and click Install:

.

Once installation is done, you can use the toPython method from com.databricks.labs.transpiler.spl.Transpiler Scala object:

.

You can use Python as well:

def transpile(query: str):
    """Transpiles a query into PySpark DataFrame DSL"""
    from pyspark.sql import SparkSession
    spark = SparkSession.getActiveSession()
    spl = spark._jvm.com.databricks.labs.transpiler.spl
    code = spl.Transpiler.toPython(query)
    print(code)

transpile('index=security_log | bin span=5m timestamp | stats count by timestamp | sort timestamp')

Cross-Compilation Samples

Query index=security_log | bin span=5m timestamp | stats count by timestamp | sort timestamp:

(spark.table('security_log')
.withColumn('timestamp', F.window(F.col('timestamp'), '5 minutes'))
.withColumn('timestamp', F.col('timestamp.start'))
.groupBy('timestamp')
.agg(F.count(F.lit(1)).alias('count'))
.orderBy(F.col('timestamp').asc()))

Query index=security_log | stats count(id) by eventType:

(spark.table('security_log')
.groupBy('eventType')
.agg(F.count(F.lit('id')).alias('count')))

Query index=security_log | eval len_ip=len(ipAddress), len_mail=len(email) | fields +eventType, len_ip, len_mail | stats sum(len_*) by eventType | sort eventType:

(spark.table('security_log')
.withColumn('len_ip', F.length(F.col('ipAddress')))
.withColumn('len_mail', F.length(F.col('email')))
.select('eventType', 'len_ip', 'len_mail')
.groupBy('eventType')
.agg(F.sum(F.col('len_ip')).alias('sum'), F.sum(F.col('len_mail')).alias('sum'))
.orderBy(F.col('eventType').asc()))

Query index=security_log | eval len_ip=len(ipAddress), len_mail=len(email) | stats min(len_*) AS min_* by eventType | sort eventType:

(spark.table('security_log')
.withColumn('len_ip', F.length(F.col('ipAddress')))
.withColumn('len_mail', F.length(F.col('email')))
.groupBy('eventType')
.agg(F.min(F.col('len_ip')).alias('min_ip'), F.min(F.col('len_mail')).alias('min_mail'))
.orderBy(F.col('eventType').asc()))

Query index=security_log | eval len_mail=len(email) | fields +id, eventType, cardNumber, len_mail | stats max(*) AS max_* by eventType | sort eventType:

(spark.table('security_log')
.withColumn('len_mail', F.length(F.col('email')))
.select(F.col('id'), F.col('eventType'), F.col('cardNumber'), F.col('len_mail'))
.groupBy('eventType')
.agg(F.max(F.col('id')).alias('max_id'),
  F.max(F.col('eventType')).alias('max_eventType'),
  F.max(F.col('cardNumber')).alias('max_cardNumber'),
  F.max(F.col('len_mail')).alias('max_len_mail'))
.orderBy(F.col('eventType').asc()))

Query index=security_log | id > 17 | fields + id, eventType, email, ipAddress:

(spark.table('security_log')
.where((F.col('id') > F.lit(17)))
.select(F.col('id'), F.col('eventType'), F.col('email'), F.col('ipAddress')))

Query index=security_log | eval array_count=mvcount(array) | where array_count=1 | fields + id, eventType, email, array, array_count:

(spark.table('security_log')
.withColumn('array_count', F.size(F.col('array')))
.where((F.col('array_count') == F.lit(1)))
.select(F.col('id'), F.col('eventType'), F.col('email'), F.col('array'), F.col('array_count')))

Query index=security_log | eval test = mvfilter(len(array) = 2) | fields + array, test:

(spark.table('security_log')
.withColumn('test', F.filter(F.col('array'), lambda array: (F.length(array) == F.lit(2))))
.select('array', 'test'))

Query index=security_log | eval test = mvcount(mvfilter(len(array) = 2)) | eval original_count = mvcount(array) | where tonumber(original_count) > tonumber(test) | fields + array, original_count, test:

(spark.table('security_log')
.withColumn('test', F.size(F.filter(F.col('array'), lambda array: (F.length(array) == F.lit(2)))))
.withColumn('original_count', F.size(F.col('array')))
.where((F.col('original_count').cast('double') > F.col('test').cast('double')))
.select(F.col('array'), F.col('original_count'), F.col('test')))

Query index=security_log | eval email_len = len(email) | id > len(email) - 10 | fields + id, email, email_len:

(spark.table('security_log')
.withColumn('email_len', F.length(F.col('email')))
.where((F.col('id') > (F.length(F.col('email')) - F.lit(10))))
.select(F.col('id'), F.col('email'), F.col('email_len')))

Query index=security_log | eval test = substr(country, 3) | fields country, test:

(spark.table('security_log')
.withColumn('test', F.substring(F.col('country'), 3, 2147483647))
.select('country', 'test'))

Query index=security_log | eval test = substr(country, 3, 3) | fields country, test:

(spark.table('security_log')
.withColumn('test', F.substring(F.col('country'), 3, 3))
.select('country', 'test'))

Query index=security_log | eval test = substr(country, -5) | fields country, test:

(spark.table('security_log')
.withColumn('test', F.substring(F.col('country'), -5, 2147483647))
.select('country', 'test'))

Query index=security_log | rex "From: <(?<from>.*)> To: <(?<to>.*)>" | fields +_raw, from, to:

(spark.table('security_log')
.select('_raw')
.withColumn('from', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 1))
.withColumn('to', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 2))
.select(F.col('_raw'), F.col('from'), F.col('to')))

Query index=security_log | rex "From: <(?<from>.*)> To: <(?<to>.*)>" | fields +from, to:

(spark.table('security_log')
.select('_raw')
.withColumn('from', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 1))
.withColumn('to', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 2))
.select(F.col('from'), F.col('to')))

Query index=security_log | fields +id, eventType, country, email | rename country as pays:

(spark.table('security_log')
.select(F.col('id'), F.col('eventType'), F.col('country'), F.col('email'))
.select(F.col('id'), F.col('eventType'), F.col('country').alias('pays'), F.col('email')))

Query index=security_log | rex "From: <(?<from>.*)> To: <(?<to>.*)>" | fields +from, to | rename from AS emailFrom, to AS emailTo:

(spark.table('security_log')
.select('_raw')
.withColumn('from', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 1))
.withColumn('to', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 2))
.select(F.col('from'), F.col('to'))
.select(F.col('from').alias('emailFrom'), F.col('to').alias('emailTo')))

Query index=security_log | rex "From: <(?<from>.*)> To: <(?<to>.*)>" | fields - _raw | return 4 emailFrom=from emailTo=to:

(spark.table('security_log')
.select('_raw')
.withColumn('from', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 1))
.withColumn('to', F.regexp_extract(F.col('_raw'), 'From: <(?<from>.*)> To: <(?<to>.*)>', 2))
.select(F.col('from'), F.col('to'))
.select(F.col('from').alias('emailFrom'), F.col('to').alias('emailTo'))
.limit(4))

Query index=security_log | join type=inner id [search index=enrichment_table] | fields +id, email, user_role:

(spark.table('security_log')
.join(spark.table('enrichment_table'), ['id'], 'inner')
.select(F.col('id'), F.col('email'), F.col('user_role')))

Query index=security_log | join type=left id [search index=enrichment_table] | fields +id, email, user_role:

(spark.table('security_log')
.join(spark.table('enrichment_table'), ['id'], 'left_outer')
.select(F.col('id'), F.col('email'), F.col('user_role')))

Query multisearch [index=security_log | id < 2 | fields +id, eventType] [index=enrichment_table | id < 2] [index=security_log | id < 2] | fields +id, eventType, user_role:

(spark.table('security_log')
.where((F.col('id') < F.lit(2)))
.select('id', 'eventType').unionByName(spark.table('enrichment_table')
.where((F.col('id') < F.lit(2))), allowMissingColumns=True).unionByName(spark.table('security_log')
.where((F.col('id') < F.lit(2))), allowMissingColumns=True)
.select(F.col('id'), F.col('eventType'), F.col('user_role')))

Query index=security_log | fields +email | eval b_not_null=if(isnotnull(email), 1, 0):

(spark.table('security_log')
.select('email')
.withColumn('b_not_null', F.when(F.col('email').isNotNull(), F.lit(1)).otherwise(F.lit(0))))

Query index=security_log | eval id_null=if(id > 10, null(), id) | table id id_null:

(spark.table('security_log')
.withColumn('id_null', F.when((F.col('id') > F.lit(10)), F.lit(None)).otherwise(F.col('id')))
.select('id', 'id_null'))

Query index=security_log_with_double | fields +id, score | fillnull:

(spark.table('security_log_with_double')
.select(F.col('id'), F.col('score'))
.na.fill('0')
.replace(float('nan'), float(0.0)))

Query index=security_log | fields +id, email | fillnull:

(spark.table('security_log')
.select(F.col('id'), F.col('email'))
.na.fill('0')
.replace(float('nan'), float(0.0)))

Query index=security_log | fields +id, email | fillnull value=NA:

(spark.table('security_log')
.select(F.col('id'), F.col('email'))
.na.fill('NA'))

Query index=security_log | fields +id, email, eventType, ipAddress | fillnull value=NA email eventType:

(spark.table('security_log')
.select(F.col('id'), F.col('email'), F.col('eventType'), F.col('ipAddress'))
.na.fill('NA', ['email', 'eventType']))

Query index=security_log | eval n = len(email) | fields +id, email, eventType, n | eventstats max(n) AS max_n, min(n) by eventType:

(spark.table('security_log')
.withColumn('n', F.length(F.col('email')))
.select(F.col('id'), F.col('email'), F.col('eventType'), F.col('n'))
.withColumn('max_n', F.max(F.col('n')).over(Window.partitionBy(F.col('eventType')).orderBy(F.col('eventType').asc())))
.withColumn('min(n)', F.min(F.col('n')).over(Window.partitionBy(F.col('eventType')).orderBy(F.col('eventType').asc()))))

Query index=security_log | eval _time=timestamp | streamstats count(_time) AS n | eval cat=if(n < 4, "A","B") | table _time cat n | streamstats max(n) AS max_n, min(n) by cat | streamstats current=false window=2 min(n) AS min_n_lag:

(spark.table('security_log')
.withColumnRenamed('timestamp', '_time')
.withColumn('n', F.count(F.lit('_time')).over(Window.partitionBy().orderBy(F.col('_time').asc()).rowsBetween(Window.unboundedPreceding, 0)))
.withColumn('cat', F.when((F.col('n') < F.lit(4)), F.lit('A')).otherwise(F.lit('B')))
.select(F.col('_time'), F.col('cat'), F.col('n'))
.withColumn('max_n', F.max(F.col('n')).over(Window.partitionBy(F.col('cat')).orderBy(F.col('_time').asc()).rowsBetween(Window.unboundedPreceding, 0)))
.withColumn('min(n)', F.min(F.col('n')).over(Window.partitionBy(F.col('cat')).orderBy(F.col('_time').asc()).rowsBetween(Window.unboundedPreceding, 0)))
.withColumn('min_n_lag', F.min(F.col('n')).over(Window.partitionBy().orderBy(F.col('_time').asc()).rowsBetween((-1 - 1), -1))))

Query index=security_log | id > 10 | eval min=min(id,15), max=max(id,15) | fields + id, min, max:

(spark.table('security_log')
.where((F.col('id') > F.lit(10)))
.withColumn('min', F.least(F.col('id'), F.lit(15)))
.withColumn('max', F.greatest(F.col('id'), F.lit(15)))
.select('id', 'min', 'max'))

Query index=security_log | eval static=10 | fields + eventType, static | dedup 1 eventType static:

(spark.table('security_log')
.withColumn('static', F.lit(10))
.select('eventType', 'static')
.withColumn('_no', F.monotonically_increasing_id())
.withColumn('_rn', F.row_number().over(Window.partitionBy(F.col('eventType'), F.col('static')).orderBy(F.col('_no').asc())))
.where((F.col('_rn') <= F.lit(1)))
.select('eventType', 'static'))

Query inputlookup security_log where id < 3 | fields +id, eventType, email, ipAddress, country:

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.limit(1000000000)
.select(F.col('id'), F.col('eventType'), F.col('email'), F.col('ipAddress'), F.col('country')))

Query inputlookup max=2 security_log where id > 10 | fields +id, eventType, email, ipAddress, country:

(spark.table('security_log')
.where((F.col('id') > F.lit(10)))
.limit(2)
.select(F.col('id'), F.col('eventType'), F.col('email'), F.col('ipAddress'), F.col('country')))

Query index=security_log | fields +id, eventType, email | format maxresults=2:

(spark.table('security_log')
.select(F.col('id'), F.col('eventType'), F.col('email'))
.limit(2)
.groupBy()
.agg(F.array_join(F.collect_list(F.format_string('((id=%s) AND (eventType=%s) AND (email=%s))', F.col('id'), F.col('eventType'), F.col('email'))), ' OR ').alias('search')))

Query index=security_log | fields +id, eventType, email | format maxresults=2 "[" "[" "&&" "]" "||" "]":

(spark.table('security_log')
.select(F.col('id'), F.col('eventType'), F.col('email'))
.limit(2)
.groupBy()
.agg(F.array_join(F.collect_list(F.format_string('[[id=%s] && [eventType=%s] && [email=%s]]', F.col('id'), F.col('eventType'), F.col('email'))), ' || ').alias('search')))

Query index=security_log | fields +id, country | mvcombine id:

(spark.table('security_log')
.select(F.col('id'), F.col('country'))
.groupBy('country')
.agg(F.collect_list(F.col('id')).alias('id')))

Query index=security_log | fields +id, country | mvcombine delim=";" id:

(spark.table('security_log')
.select(F.col('id'), F.col('country'))
.groupBy('country')
.agg(F.array_join(F.collect_list(F.col('id')), ';').alias('id')))

Query index=security_log | fields +id, array | mvexpand array | where id=1:

(spark.table('security_log')
.select(F.col('id'), F.col('array'))
.select(F.col('id'), F.explode(F.col('array')).alias('array'))
.where((F.col('id') == F.lit(1))))

Query index=security_log | fields +id, array | mvexpand array limit=1 | where id=1:

(spark.table('security_log')
.select(F.col('id'), F.col('array'))
.select(F.col('id'), F.explode(F.expr('slice(array, 1, 1)')).alias('array'))
.where((F.col('id') == F.lit(1))))

Query makeresults count=5 annotate=t server_group="group1" | fields - _time:

(spark.range(0, 5, 1)
.withColumn('_raw', F.lit(None))
.withColumn('_time', F.current_timestamp())
.withColumn('host', F.lit(None))
.withColumn('source', F.lit(None))
.withColumn('sourcetype', F.lit(None))
.withColumn('server', F.lit('local'))
.withColumn('server_group', F.lit(None))
.select(F.col('_raw'),
  F.col('_time'),
  F.col('host'),
  F.col('source'),
  F.col('sourcetype'),
  F.col('server'),
  F.col('server_group'))
.select(F.col('_raw'), F.col('host'), F.col('source'), F.col('sourcetype'), F.col('server'), F.col('server_group')))

Query index=security_log | id < 5 | eval in_range = if(cidrmatch("109.177.0.0/16", ipAddress),1,0) | fields +id, ipAddress, in_range:

(spark.table('security_log')
.where((F.col('id') < F.lit(5)))
.withColumn('in_range', F.when(F.expr("cidr_match('109.177.0.0/16', ipAddress)"), F.lit(1)).otherwise(F.lit(0)))
.select(F.col('id'), F.col('ipAddress'), F.col('in_range')))

Query index=security_log | id < 5 | ipAddress=109.177.0.0/16 | fields +id, ipAddress:

(spark.table('security_log')
.where((F.col('id') < F.lit(5)))
.where(F.expr("cidr_match('109.177.0.0/16', ipAddress)"))
.select('id', 'ipAddress'))

Query index=security_log | id < 5 | eval quant=round((id/3),2), unit=if(id < 3, "M", "G") | eval size=quant.unit, memk=memk(size) | fields +id, size, memk:

(spark.table('security_log')
.where((F.col('id') < F.lit(5)))
.withColumn('quant', F.round((F.col('id') / F.lit(3)), 2))
.withColumn('unit', F.when((F.col('id') < F.lit(3)), F.lit('M')).otherwise(F.lit('G')))
.withColumn('size', F.concat(F.col('quant'), F.col('unit')))
.withColumn('memk', (F.regexp_extract(F.col('size'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('size'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('size'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('size'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))))
.select(F.col('id'), F.col('size'), F.col('memk')))

Query index=security_log | id < 5 | eval unit=if(id < 3, "Megabyte", "GB") | eval size=id.unit, rmunit=rmunit(size) | fields +id, size, rmunit:

(spark.table('security_log')
.where((F.col('id') < F.lit(5)))
.withColumn('unit', F.when((F.col('id') < F.lit(3)), F.lit('Megabyte')).otherwise(F.lit('GB')))
.withColumn('size', F.concat(F.col('id'), F.col('unit')))
.withColumn('rmunit', F.regexp_extract(F.col('size'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double'))
.select(F.col('id'), F.col('size'), F.col('rmunit')))

Query index=security_log | id < 5 | eval s=substr(ipAddress,1,3).",".substr(ipAddress, 5, 2) | eval n=rmcomma(s) | fields +id, s, n:

(spark.table('security_log')
.where((F.col('id') < F.lit(5)))
.withColumn('s', F.concat(F.substring(F.col('ipAddress'), 1, 3), F.concat(F.lit(','), F.substring(F.col('ipAddress'), 5, 2))))
.withColumn('n', F.regexp_replace(F.col('s'), ',', '').cast('double'))
.select('id', 's', 'n'))

Query index=security_log | id < 3 | convert timeformat="%H" ctime(timestamp) AS hour | fields +id, timestamp, hour:

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.withColumn('hour', F.date_format(F.col('timestamp'), 'HH'))
.select(F.col('id'), F.col('timestamp'), F.col('hour')))

Query index=security_log | id < 3 | convert ctime(timestamp) AS ctime | fields +id, timestamp, ctime:

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.withColumn('ctime', F.date_format(F.col('timestamp'), 'MM/dd/yyyy HH:mm:ss'))
.select(F.col('id'), F.col('timestamp'), F.col('ctime')))

Query index=security_log | id < 3 | fields +id, cardType, cardNumber | convert num(card*) none(cardType):

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.select(F.col('id'), F.col('cardType'), F.col('cardNumber'))
.select(F.col('id'),
  F.col('cardType'),
  F.when(F.date_format(F.col('cardNumber').cast('string'), 'MM/dd/yyyy HH:mm:ss').isNotNull(), F.date_format(F.col('cardNumber').cast('string'), 'MM/dd/yyyy HH:mm:ss'))
.when(F.col('cardNumber').cast('double').isNotNull(), F.col('cardNumber').cast('double'))
.when((F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))).isNotNull(), (F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))))
.when(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double').isNotNull(), F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double'))
.when(F.regexp_replace(F.col('cardNumber'), ',', '').cast('double').isNotNull(), F.regexp_replace(F.col('cardNumber'), ',', '').cast('double'))
.alias('cardNumber')))

Query index=security_log | id < 3 | fields +id, ipAddress, cardType, cardNumber | convert auto(*) none(i*):

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.select(F.col('id'), F.col('ipAddress'), F.col('cardType'), F.col('cardNumber'))
.select(F.col('id'),
  F.col('ipAddress'),
  F.when(F.date_format(F.col('cardType').cast('string'), 'MM/dd/yyyy HH:mm:ss').isNotNull(), F.date_format(F.col('cardType').cast('string'), 'MM/dd/yyyy HH:mm:ss'))
.when(F.col('cardType').cast('double').isNotNull(), F.col('cardType').cast('double'))
.when((F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))).isNotNull(), (F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))))
.when(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double').isNotNull(), F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double'))
.when(F.regexp_replace(F.col('cardType'), ',', '').cast('double').isNotNull(), F.regexp_replace(F.col('cardType'), ',', '').cast('double'))
.otherwise(F.col('cardType')).alias('cardType'),
  F.col('cardNumber'))
.select(F.col('id'),
  F.col('ipAddress'),
  F.when(F.date_format(F.col('cardType').cast('string'), 'MM/dd/yyyy HH:mm:ss').isNotNull(), F.date_format(F.col('cardType').cast('string'), 'MM/dd/yyyy HH:mm:ss'))
.when(F.col('cardType').cast('double').isNotNull(), F.col('cardType').cast('double'))
.when((F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))).isNotNull(), (F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))))
.when(F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double').isNotNull(), F.regexp_extract(F.col('cardType'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double'))
.when(F.regexp_replace(F.col('cardType'), ',', '').cast('double').isNotNull(), F.regexp_replace(F.col('cardType'), ',', '').cast('double'))
.otherwise(F.col('cardType')).alias('cardType'),
  F.when(F.date_format(F.col('cardNumber').cast('string'), 'MM/dd/yyyy HH:mm:ss').isNotNull(), F.date_format(F.col('cardNumber').cast('string'), 'MM/dd/yyyy HH:mm:ss'))
.when(F.col('cardNumber').cast('double').isNotNull(), F.col('cardNumber').cast('double'))
.when((F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))).isNotNull(), (F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 1).cast('double') * F.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('K')), F.lit(1.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('M')), F.lit(1024.0))
.when((F.upper(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)([kmg])$', 2)) == F.lit('G')), F.lit(1048576.0))
.otherwise(F.lit(1.0))))
.when(F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double').isNotNull(), F.regexp_extract(F.col('cardNumber'), '(?i)^(\\d*\\.?\\d+)(\\w*)$', 1).cast('double'))
.when(F.regexp_replace(F.col('cardNumber'), ',', '').cast('double').isNotNull(), F.regexp_replace(F.col('cardNumber'), ',', '').cast('double'))
.otherwise(F.col('cardNumber')).alias('cardNumber')))

Query index=security_log | id < 3 | eval date = strftime(timeStamp, "%m/%d/%Y %H:%M:%S") | eval hour=strftime("2021-11-05 21:20:32", "%H") | fields +id, date, hour:

(spark.table('security_log')
.where((F.col('id') < F.lit(3)))
.withColumn('date', F.date_format(F.col('timeStamp'), 'MM/dd/yyyy HH:mm:ss'))
.withColumn('hour', F.date_format(F.lit('2021-11-05 21:20:32'), 'HH'))
.select('id', 'date', 'hour'))

Query index=security_log | eval anotherNum=10 | fields +id, eventType, anotherNum | addtotals fieldname=my_total:

(spark.table('security_log')
.withColumn('anotherNum', F.lit(10))
.select(F.col('id'), F.col('eventType'), F.col('anotherNum'))
.withColumn('my_total', (F.when(F.col('anotherNum').cast('double').isNotNull(), F.col('anotherNum')).otherwise(F.lit(0.0)) + (F.when(F.col('eventType').cast('double').isNotNull(), F.col('eventType')).otherwise(F.lit(0.0)) + F.when(F.col('id').cast('double').isNotNull(), F.col('id')).otherwise(F.lit(0.0))))))

Query index=security_log | map search="search index=enrichment_table id=$id$":

(spark.table('enrichment_table')
.limit(10).alias('l')
.join(spark.table('security_log').alias('r'),
(F.col('l.id') == F.col('r.id')), 'left_semi'))

Overriding _time, _raw and index names

Your Delta Lake may have other column names containing timestamps and raw records, so you can override those by setting the following spark conf values from code or cluster config:

spark.conf.set("spl.field._time", "ts")
spark.conf.set("spl.field._raw", "json")
spark.conf.set("spl.index", "custom_table")

Featured on

Project Support

Please note that all projects in the databrickslabs github space are provided for your exploration only, and are not formally supported by Databricks with Service Level Agreements (SLAs). They are provided AS-IS and we do not make any guarantees of any kind. Please do not submit a support ticket relating to any issues arising from the use of these projects.

Any issues discovered through the use of this project should be filed as GitHub Issues on the Repo. They will be reviewed as time permits, but there are no formal SLAs for support.