-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoxford_model.py
75 lines (55 loc) · 3.72 KB
/
oxford_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
def model_fn(features, labels, mode, params):
# enter training architecture, default is to train on data but can be overridden for predictions...
# x = tf.placeholder_with_default(features, shape=[-1, np.prod(params.img_dim)], name='features')
# y = tf.placeholder_with_default(labels, shape=[-1, np.prod(params.y_size)], name='labels')
x = features['x']
x_image = tf.reshape(x, [-1, *params['img_dim']])
tf.Print(x_image, data=[x_image])
training = (mode == tf.estimator.ModeKeys.TRAIN)
graph = x_image
graph = tf.layers.conv2d(graph, name='layer_conv2d_1', padding='same',
filters=16, kernel_size=3, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.4, training=training)
graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_2', strides=2)
graph = tf.layers.conv2d(graph, name='layer_conv2d_2', padding='same',
filters=16, kernel_size=3, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.4, training=training)
graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_3', strides=2)
graph = tf.layers.conv2d(graph, name='layer_conv2d_3', padding='same',
filters=16, kernel_size=3, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_4', strides=2)
graph = tf.layers.conv2d(graph, name='layer_conv2d_4', padding='same',
filters=16, kernel_size=5, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_5', strides=2)
graph = tf.layers.conv2d(graph, name='layer_conv2d_5', padding='same',
filters=16, kernel_size=5, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_6', strides=2)
graph = tf.layers.conv2d(graph, name='layer_conv2d_6', padding='same',
filters=16, kernel_size=5, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
# graph = tf.layers.max_pooling2d(graph, pool_size=2, name='layer_maxpool_p1_2', strides=2)
graph = tf.layers.flatten(graph, name='flatten')
graph = tf.layers.dense(graph, name='fully_conn', units=256, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
graph = tf.layers.dense(graph, name='fully_conn2', units=64, activation=tf.nn.relu)
graph = tf.layers.dropout(graph, rate=0.3, training=training)
graph = tf.layers.dense(graph, name='logits', units=params['y_size'], activation=None)
logits = graph
y_pred = tf.nn.softmax(logits=logits)
# for predictions
y_pred_cls = tf.argmax(y_pred, axis=1, name='prediction')
if mode == tf.estimator.ModeKeys.PREDICT:
spec = tf.estimator.EstimatorSpec(mode=mode, predictions=y_pred_cls)
else:
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
class_labels = tf.argmax(labels, axis=1) # BinaryLabels to numeric
loss = tf.reduce_mean(cross_entropy, name='myloss')
optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate'])
training = optimizer.minimize(loss, global_step=tf.train.get_global_step(), name='mygraph')
metrics = {'accuracy': tf.metrics.accuracy(class_labels, y_pred_cls)}
spec = tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=training, eval_metric_ops=metrics)
return spec