-
-
Notifications
You must be signed in to change notification settings - Fork 110
/
instances.py
569 lines (492 loc) · 20.7 KB
/
instances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import asyncio
import os
import uuid
import json
import sqlite3
import dask
from dask.utils import tmpfile
from dask_cloudprovider.generic.vmcluster import (
VMCluster,
VMInterface,
SchedulerMixin,
)
from distributed.core import Status
try:
import googleapiclient.discovery
from googleapiclient.errors import HttpError
except ImportError as e:
msg = (
"Dask Cloud Provider GCP requirements are not installed.\n\n"
"Please either conda or pip install as follows:\n\n"
" conda install -c conda-forge google-api-python-client google-auth # either conda install\n"
' python -m pip install "dask-cloudprovider[gcp]" --upgrade # or python -m pip install'
)
raise ImportError(msg) from e
class GCPCredentialsError(Exception):
"""Raised when GCP credentials are missing"""
def __init__(self, message=None):
if message is None:
message = (
"GCP Credentials have not been provided. Either set the following environment variable: "
"export GOOGLE_APPLICATION_CREDENTIALS=<Path-To-GCP-JSON-Credentials> "
"or authenticate with "
"gcloud auth login"
)
super().__init__(message)
class GCPInstance(VMInterface):
def __init__(
self,
cluster,
config=None,
zone=None,
projectid=None,
machine_type=None,
filesystem_size=None,
source_image=None,
docker_image=None,
env_vars=None,
ngpus=None,
gpu_type=None,
bootstrap=None,
gpu_instance=None,
**kwargs,
):
super().__init__(**kwargs)
self.cluster = cluster
self.config = config
self.projectid = projectid or self.config.get("projectid")
self.zone = zone or self.config.get("zone")
self.machine_type = machine_type or self.config.get("machine_type")
self.source_image = self.expand_source_image(
source_image or self.config.get("source_image")
)
self.docker_image = docker_image or self.config.get("docker_image")
self.env_vars = env_vars
self.filesystem_size = filesystem_size or self.config.get("filesystem_size")
self.ngpus = ngpus or self.config.get("ngpus")
self.gpu_type = gpu_type or self.config.get("gpu_type")
self.gpu_instance = gpu_instance
self.bootstrap = bootstrap
self.general_zone = "-".join(self.zone.split("-")[:2]) # us-east1-c -> us-east1
def create_gcp_config(self):
config = {
"name": self.name,
"machineType": f"zones/{self.zone}/machineTypes/{self.machine_type}",
"displayDevice": {"enableDisplay": "false"},
"tags": {"items": ["http-server", "https-server"]},
# Specify the boot disk and the image to use as a source.
"disks": [
{
"kind": "compute#attachedDisk",
"type": "PERSISTENT",
"boot": "true",
"mode": "READ_WRITE",
"autoDelete": "true",
"deviceName": self.name,
"initializeParams": {
"sourceImage": self.source_image,
"diskType": f"projects/{self.projectid}/zones/{self.zone}/diskTypes/pd-standard",
"diskSizeGb": f"{self.filesystem_size}", # nvidia-gpu-cloud cannot be smaller than 32 GB
"labels": {},
# "source": "projects/nv-ai-infra/zones/us-east1-c/disks/ngc-gpu-dask-rapids-docker-experiment",
},
"diskEncryptionKey": {},
}
],
"canIpForward": "false",
"networkInterfaces": [
{
"kind": "compute#networkInterface",
"subnetwork": f"projects/{self.projectid}/regions/{self.general_zone}/subnetworks/default",
"aliasIpRanges": [],
}
],
# Allow the instance to access cloud storage and logging.
"serviceAccounts": [
{
"email": "default",
"scopes": [
"https://www.googleapis.com/auth/devstorage.read_write",
"https://www.googleapis.com/auth/logging.write",
],
}
],
# Metadata is readable from the instance and allows you to
# pass configuration from deployment scripts to instances.
"metadata": {
"items": [
{
# Startup script is automatically executed by the
# instance upon startup.
"key": "google-logging-enabled",
"value": "true",
},
{"key": "user-data", "value": self.cloud_init},
]
},
"labels": {"container-vm": "dask-cloudprovider"},
"scheduling": {
"preemptible": "false",
"onHostMaintenance": "TERMINATE",
"automaticRestart": "true",
"nodeAffinities": [],
},
"shieldedInstanceConfig": {
"enableSecureBoot": "false",
"enableVtpm": "true",
"enableIntegrityMonitoring": "true",
},
"deletionProtection": "false",
"reservationAffinity": {"consumeReservationType": "ANY_RESERVATION"},
}
if self.config.get("public_ingress", True):
config["networkInterfaces"][0]["accessConfigs"] = [
{
"kind": "compute#accessConfig",
"name": "External NAT",
"type": "ONE_TO_ONE_NAT",
"networkTier": "PREMIUM",
}
]
if self.ngpus:
config["guestAccelerators"] = [
{
"acceleratorCount": self.ngpus,
"acceleratorType": f"projects/{self.projectid}/zones/{self.zone}/acceleratorTypes/{self.gpu_type}",
}
]
return config
async def create_vm(self):
self.cloud_init = self.cluster.render_cloud_init(
image=self.docker_image,
command=self.command,
gpu_instance=self.gpu_instance,
bootstrap=self.bootstrap,
auto_shutdown=self.cluster.auto_shutdown,
env_vars=self.env_vars,
)
self.gcp_config = self.create_gcp_config()
try:
inst = (
self.cluster.compute.instances()
.insert(project=self.projectid, zone=self.zone, body=self.gcp_config)
.execute()
)
self.gcp_inst = inst
self.id = self.gcp_inst["id"]
except HttpError as e:
# something failed
print(str(e))
raise Exception(str(e))
while self.update_status() != "RUNNING":
await asyncio.sleep(0.5)
self.internal_ip = self.get_internal_ip()
if self.config.get("public_ingress", True):
self.external_ip = self.get_external_ip()
else:
self.external_ip = None
self.cluster._log(
f"{self.name}\n\tInternal IP: {self.internal_ip}\n\tExternal IP: {self.external_ip}"
)
return self.internal_ip, self.external_ip
def get_internal_ip(self):
return (
self.cluster.compute.instances()
.list(project=self.projectid, zone=self.zone, filter=f"name={self.name}")
.execute()["items"][0]["networkInterfaces"][0]["networkIP"]
)
def get_external_ip(self):
return (
self.cluster.compute.instances()
.list(project=self.projectid, zone=self.zone, filter=f"name={self.name}")
.execute()["items"][0]["networkInterfaces"][0]["accessConfigs"][0]["natIP"]
)
def update_status(self):
d = (
self.cluster.compute.instances()
.list(project=self.projectid, zone=self.zone, filter=f"name={self.name}")
.execute()
)
self.gcp_inst = d
if not d.get("items", None):
self.cluster._log("Failed to find running VMI...")
self.cluster._log(self.gcp_inst)
raise Exception(f"Missing Instance {self.name}")
return d["items"][0]["status"]
def expand_source_image(self, source_image):
if "/" not in source_image:
return f"projects/{self.projectid}/global/images/{source_image}"
if source_image.startswith("https://www.googleapis.com/compute/v1/"):
return source_image.replace("https://www.googleapis.com/compute/v1/", "")
return source_image
async def close(self):
self.cluster._log(f"Closing Instance: {self.name}")
self.cluster.compute.instances().delete(
project=self.projectid, zone=self.zone, instance=self.name
).execute()
class GCPScheduler(SchedulerMixin, GCPInstance):
"""Scheduler running in a GCP instance."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
async def start(self):
await self.start_scheduler()
self.status = Status.running
async def start_scheduler(self):
self.cluster._log(
f"Launching cluster with the following configuration: "
f"\n Source Image: {self.source_image} "
f"\n Docker Image: {self.docker_image} "
f"\n Machine Type: {self.machine_type} "
f"\n Filesytsem Size: {self.filesystem_size} "
f"\n N-GPU Type: {self.ngpus} {self.gpu_type}"
f"\n Zone: {self.zone} "
)
self.cluster._log("Creating scheduler instance")
self.internal_ip, self.external_ip = await self.create_vm()
if self.config.get("public_ingress", True):
# scheduler is publicly available
self.address = f"tcp://{self.external_ip}:8786"
else:
# scheduler is only accessible within VPC
self.address = f"tcp://{self.internal_ip}:8786"
await self.wait_for_scheduler()
# need to reserve internal IP for workers
# gcp docker containers can't see resolve ip address
self.cluster.scheduler_internal_ip = self.internal_ip
self.cluster.scheduler_external_ip = self.external_ip
class GCPWorker(GCPInstance):
"""Worker running in an GCP instance."""
def __init__(
self,
scheduler: str,
*args,
worker_class: str = "distributed.cli.dask_worker",
worker_options: dict = {},
**kwargs,
):
super().__init__(**kwargs)
self.scheduler = scheduler
self.worker_class = worker_class
self.name = f"dask-{self.cluster.uuid}-worker-{str(uuid.uuid4())[:8]}"
internal_scheduler = f"{self.cluster.scheduler_internal_ip}:8786"
self.command = " ".join(
[
self.set_env,
"python",
"-m",
"distributed.cli.dask_spec",
internal_scheduler,
"--spec",
"''%s''" # in yaml double single quotes escape the single quote
% json.dumps(
{
"cls": self.worker_class,
"opts": {
**worker_options,
"name": self.name,
},
}
),
]
)
async def start(self):
await super().start()
await self.start_worker()
async def start_worker(self):
self.cluster._log("Creating worker instance")
self.internal_ip, self.external_ip = await self.create_vm()
if self.config.get("public_ingress", True):
# scheduler is publicly available
self.address = self.external_ip
else:
self.address = self.internal_ip
class GCPCluster(VMCluster):
"""Cluster running on GCP VM Instances.
This cluster manager constructs a Dask cluster running on Google Cloud Platform 67VMs.
When configuring your cluster you may find it useful to install the ``gcloud`` tool for querying the
GCP API for available options.
https://cloud.google.com/sdk/gcloud
Parameters
----------
projectid: str
Your GCP project ID. This must be set either here or in your Dask config.
https://cloud.google.com/resource-manager/docs/creating-managing-projects
See the GCP docs page for more info.
https://cloudprovider.dask.org/en/latest/gcp.html#project-id
zone: str
The GCP zone to launch you cluster in. A full list can be obtained with ``gcloud compute zones list``.
machine_type: str
The VM machine_type. You can get a full list with ``gcloud compute machine-types list``.
The default is ``n1-standard-1`` which is 3.75GB RAM and 1 vCPU
source_image: str
The OS image to use for the VM. Dask Cloudprovider will boostrap Ubuntu based images automatically.
Other images require Docker and for GPUs the NVIDIA Drivers and NVIDIA Docker.
A list of available images can be found with ``gcloud compute images list``
Valid values are:
- The short image name provided it is in ``projectid``.
- The full image name ``projects/<projectid>/global/images/<source_image>``.
- The full image URI such as those listed in ``gcloud compute images list --uri``.
The default is ``projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014``.
docker_image: string (optional)
The Docker image to run on all instances.
This image must have a valid Python environment and have ``dask`` installed in order for the
``dask-scheduler`` and ``dask-worker`` commands to be available. It is recommended the Python
environment matches your local environment where ``EC2Cluster`` is being created from.
For GPU instance types the Docker image much have NVIDIA drivers and ``dask-cuda`` installed.
By default the ``daskdev/dask:latest`` image will be used.
ngpus: int (optional)
The number of GPUs to atatch to the instance.
Default is ``0``.
gpu_type: str (optional)
The name of the GPU to use. This must be set if ``ngpus>0``.
You can see a list of GPUs available in each zone with ``gcloud compute accelerator-types list``.
filesystem_size: int (optional)
The VM filesystem size in GB. Defaults to ``50``.
n_workers: int (optional)
Number of workers to initialise the cluster with. Defaults to ``0``.
bootstrap: bool (optional)
Install Docker and NVIDIA drivers if ``ngpus>0``. Set to ``False`` if you are using a custom ``source_image``
which already has these requirements. Defaults to ``True``.
worker_class: str
The Python class to run for the worker. Defaults to ``dask.distributed.Nanny``
worker_options: dict (optional)
Params to be passed to the worker class.
See :class:`distributed.worker.Worker` for default worker class.
If you set ``worker_class`` then refer to the docstring for the custom worker class.
env_vars: dict (optional)
Environment variables to be passed to the worker.
scheduler_options: dict (optional)
Params to be passed to the scheduler class.
See :class:`distributed.scheduler.Scheduler`.
silence_logs: bool (optional)
Whether or not we should silence logging when setting up the cluster.
asynchronous: bool (optional)
If this is intended to be used directly within an event loop with
async/await
security : Security or bool (optional)
Configures communication security in this cluster. Can be a security
object, or True. If True, temporary self-signed credentials will
be created automatically.
Examples
--------
Create the cluster.
>>> from dask_cloudprovider.gcp import GCPCluster
>>> cluster = GCPCluster(n_workers=1)
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesytsem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-acc897b9-scheduler
Internal IP: 10.142.0.37
External IP: 34.75.60.62
Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-acc897b9-worker-bfbc94bc
Internal IP: 10.142.0.39
External IP: 34.73.245.220
Connect a client.
>>> from dask.distributed import Client
>>> client = Client(cluster)
Do some work.
>>> import dask.array as da
>>> arr = da.random.random((1000, 1000), chunks=(100, 100))
>>> arr.mean().compute()
0.5001550986751964
Close the cluster
>>> cluster.close()
Closing Instance: dask-acc897b9-worker-bfbc94bc
Closing Instance: dask-acc897b9-scheduler
You can also do this all in one go with context managers to ensure the cluster is
created and cleaned up.
>>> with GCPCluster(n_workers=1) as cluster:
... with Client(cluster) as client:
... print(da.random.random((1000, 1000), chunks=(100, 100)).mean().compute())
Launching cluster with the following configuration:
Source Image: projects/ubuntu-os-cloud/global/images/ubuntu-minimal-1804-bionic-v20201014
Docker Image: daskdev/dask:latest
Machine Type: n1-standard-1
Filesytsem Size: 50
N-GPU Type:
Zone: us-east1-c
Creating scheduler instance
dask-19352f29-scheduler
Internal IP: 10.142.0.41
External IP: 34.73.217.251
Waiting for scheduler to run
Scheduler is running
Creating worker instance
dask-19352f29-worker-91a6bfe0
Internal IP: 10.142.0.48
External IP: 34.73.245.220
0.5000812282861661
Closing Instance: dask-19352f29-worker-91a6bfe0
Closing Instance: dask-19352f29-scheduler
"""
def __init__(
self,
projectid=None,
zone=None,
machine_type=None,
source_image=None,
docker_image=None,
ngpus=None,
gpu_type=None,
filesystem_size=None,
auto_shutdown=None,
bootstrap=True,
**kwargs,
):
self.compute = authenticate()
self.config = dask.config.get("cloudprovider.gcp", {})
self.auto_shutdown = (
auto_shutdown
if auto_shutdown is not None
else self.config.get("auto_shutdown")
)
self.scheduler_class = GCPScheduler
self.worker_class = GCPWorker
self.bootstrap = (
bootstrap if bootstrap is not None else self.config.get("bootstrap")
)
self.machine_type = machine_type or self.config.get("machine_type")
self.gpu_instance = "gpu" in self.machine_type or bool(ngpus)
self.options = {
"cluster": self,
"config": self.config,
"projectid": projectid or self.config.get("projectid"),
"source_image": source_image or self.config.get("source_image"),
"docker_image": docker_image or self.config.get("docker_image"),
"filesystem_size": filesystem_size or self.config.get("filesystem_size"),
"zone": zone or self.config.get("zone"),
"machine_type": self.machine_type,
"ngpus": ngpus or self.config.get("ngpus"),
"gpu_type": gpu_type or self.config.get("gpu_type"),
"gpu_instance": self.gpu_instance,
"bootstrap": self.bootstrap,
}
self.scheduler_options = {**self.options}
self.worker_options = {**self.options}
super().__init__(**kwargs)
def authenticate():
if os.environ.get("GOOGLE_APPLICATION_CREDENTIALS", False):
compute = googleapiclient.discovery.build("compute", "v1")
else:
import google.auth.credentials # google-auth
path = os.path.join(os.path.expanduser("~"), ".config/gcloud/credentials.db")
if not os.path.exists(path):
raise GCPCredentialsError()
conn = sqlite3.connect(path)
creds_rows = conn.execute("select * from credentials").fetchall()
with tmpfile() as f:
with open(f, "w") as f_:
# take first row
f_.write(creds_rows[0][1])
creds, _ = google.auth.load_credentials_from_file(filename=f)
compute = googleapiclient.discovery.build("compute", "v1", credentials=creds)
return compute
# Note: if you have trouble connecting make sure firewall rules in GCP are stetup for 8787,8786,22