forked from EYLeong/traffic_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
83 lines (60 loc) · 3.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Temporal_Layer(nn.Module):
def __init__(self, in_channels, out_channels, kernel):
super(Temporal_Layer, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, (1, kernel))
self.conv2 = nn.Conv2d(in_channels, out_channels, (1, kernel))
def forward(self, x):
x = x.permute(0,3,1,2)
normal = self.conv1(x)
sig = torch.sigmoid(self.conv2(x))
out = normal * sig
out = out.permute(0,2,3,1)
# Convert back from NCHW to NHWC
return out
class Stgcn_Block(nn.Module):
def __init__(self, in_channels, spatial_channels, out_channels, nodes_num):
super(Stgcn_Block, self).__init__()
self.temporal_layer1 = Temporal_Layer(in_channels, out_channels, kernel = 2)
self.temporal_layer2 = Temporal_Layer(in_channels = spatial_channels, out_channels = out_channels, kernel = 2)
self.weight = nn.Parameter(torch.FloatTensor(out_channels, spatial_channels))
self.initialise_weight()
self.batch_norm = nn.BatchNorm2d(nodes_num)
def initialise_weight(self):
std_dv = 1. / math.sqrt(self.weight.shape[1])
self.weight.data.uniform_(-std_dv, std_dv)
def forward(self, x, adj_hat):
# First temporal Block
temporal_block1 = self.temporal_layer1(x) #temporal_block1.shape = batch_size, num_nodes, input_timesteps -1, out_channels
#Spatial Graph Convolution
#n = batch_size, h = nodes_num, w = input_timesteps -1, c = out_channels
t = temporal_block1.permute(1,0,2,3) #Converts tensor from nhwc to hnwc for multiplication with adj_matrix
gconv1 = torch.einsum("ij, jklm -> kilm", [adj_hat, t]) #(h,h) * (h,n,w,c) -> (n,h,w,c)
gconv2 = F.relu(torch.matmul(gconv1, self.weight)) #gconv2.shape = n,h,w,c* where c* = spatial_channels
#Second Temporal Block
temporal_block2 = self.temporal_layer2(gconv2) #temporal_block2.shape = batch_size, num_nodes, input_timesteps -2, out_channels
out = self.batch_norm(temporal_block2)
return out
class Stgcn_Model(nn.Module):
def __init__(self, nodes_num, features_num, input_timesteps, num_output):
super(Stgcn_Model, self).__init__()
self.stgcn_block1 = Stgcn_Block(in_channels = features_num, spatial_channels = 16, out_channels = 64,
nodes_num = nodes_num)
self.stgcn_block2 = Stgcn_Block(in_channels = 64, spatial_channels = 16, out_channels = 64,
nodes_num = nodes_num)
self.temporal_layer = Temporal_Layer(in_channels = 64, out_channels = 64, kernel = 2)
self.fc = nn.Linear((input_timesteps - 5) * 64, num_output)
def forward(self, adj_hat, x):
#x.shape = batch_size, num_nodes, input_timesteps, features_num
out1 = self.stgcn_block1(x, adj_hat)
#out1.shape = batch_size, num_nodes, input_timesteps - 2, out_channels
out2 = self.stgcn_block2(out1, adj_hat)
#out2.shape = batch_size, num_nodes, input_timesteps -4, out_channels
out3 = self.temporal_layer(out2)
#out3.shape = batch_size, num_nodes, input_timesteps -5, out_channels
out3_reshaped = out3.reshape(out3.shape[0], out3.shape[1], -1)
out4 = self.fc(out3_reshaped)
return out4