-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcal_analyse.py
executable file
·53 lines (39 loc) · 1.15 KB
/
cal_analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
import numpy as np
import pickle
from matplotlib import pyplot as plt
import sys
atten = []
atten_delog = []
att_vals = {}
att_vals_delog = {}
for f in sys.argv[1:]:
print(f)
fp = open(f, 'rb')
data = pickle.load(fp)
atten.append(-int(f.split('.')[0].split('n')[1].split('db')[0]))
atten_delog.append(10.0 ** (atten[-1]/10.0))
att_vals[str(atten[-1])] = data['Mean']['data'][:]
att_vals_delog[str(atten[-1])] = 10.0 ** (data['Mean']['data'][:] / 10.0)
dlen = data['Mean']['data'].shape[0]
for a in atten:
plt.plot(att_vals[str(a)], label=str(a))
plt.legend()
plt.show()
deg = 1
fdata = np.zeros((dlen, deg+1))
for x in range(dlen):
y = []
for a in atten:
y.append(att_vals_delog[str(a)][x])
fdata[x, :] = np.polyfit(atten_delog, y, deg)
pp = np.poly1d(fdata[x, :])
if x > 325:
plt.plot(10.0 * np.log10(atten_delog), 10.0 * np.log10(y), '+')
tvals = np.arange(-50.0, 0, 0.1)
plt.plot(tvals, 10.0 * np.log10(pp(10.0 ** (tvals / 10.0))))
plt.show()
for d in range(fdata.shape[1]):
plt.plot(fdata[:, d], label=str(d))
plt.legend()
plt.show()