forked from df8oe/RS41HUP
-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.c
702 lines (599 loc) · 20.5 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
// STM32F100 and SI4032 RTTY transmitter
// released under GPL v.2 by anonymous developer
// enjoy and have a nice day
// ver 1.5a
#include <stm32f10x_gpio.h>
#include <stm32f10x_tim.h>
#include <stm32f10x_spi.h>
#include <stm32f10x_tim.h>
#include <stm32f10x_usart.h>
#include <stm32f10x_adc.h>
#include <stm32f10x_rcc.h>
#include "stdlib.h"
#include <stdio.h>
#include <string.h>
#include <misc.h>
#include <inttypes.h>
#include "f_rtty.h"
#include "init.h"
#include "config.h"
#include "radio.h"
#include "ublox.h"
#include "delay.h"
//#include "aprs.h"
#include "util.h"
#include "mfsk.h"
#include "horus_l2.h"
#include "morse.h"
// If enabled, print out binary packets as hex before and after coding.
//#define MFSKDEBUG 1
// IO Pins Definitions. The state of these pins are initilised in init.c
#define GREEN GPIO_Pin_7 // Inverted
#define RED GPIO_Pin_8 // Non-Inverted (?)
// Transmit Modulation Switching
#define STARTUP 0
#define RTTY 1
#define MFSK 2
#define FSK_2 3
volatile int current_mode = STARTUP;
// Telemetry Data to Transmit - used in RTTY & MFSK packet generation functions.
unsigned int send_count; //frame counter
int voltage;
int8_t si4032_temperature;
GPSEntry gpsData;
char callsign[15] = {CALLSIGN};
char status[2] = {'N'};
uint16_t CRC_rtty = 0x12ab; //checksum (dummy initial value)
char buf_rtty[200];
char buf_mfsk[200];
__IO uint16_t ADCVal[2];
// Volatile Variables, used within interrupts.
volatile int adc_bottom = 2000;
volatile char flaga = 0; // GPS Status Flags
volatile int led_enabled = 1; // Flag to disable LEDs at altitude.
volatile unsigned char pun = 0;
volatile unsigned int cun = 10;
volatile unsigned char tx_on = 0;
volatile unsigned int tx_on_delay;
volatile unsigned char tx_enable = 0;
rttyStates send_rtty_status = rttyZero;
volatile char *tx_buffer;
volatile uint16_t current_mfsk_byte = 0;
volatile uint16_t packet_length = 0;
volatile uint16_t button_pressed = 0;
volatile uint8_t disable_armed = 0;
volatile uint32_t deep_sleep_timer = 0;
volatile uint8_t entered_psm = 0;
#ifdef CONTINUOUS_MODE
volatile uint8_t continuous_mode = 1;
#else
volatile uint8_t continuous_mode = 0;
#endif
#ifdef TX_PIP
volatile unsigned int tx_pip = TX_PIP / (1000/BAUD_RATE);
#endif
// Binary Packet Format
// Note that we need to pack this to 1-byte alignment, hence the #pragma flags below
// Refer: https://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Structure_002dPacking-Pragmas.html
#pragma pack(push,1)
struct TBinaryPacket
{
uint8_t PayloadID;
uint16_t Counter;
uint8_t Hours;
uint8_t Minutes;
uint8_t Seconds;
float Latitude;
float Longitude;
uint16_t Altitude;
uint8_t Speed; // Speed in Knots (1-255 knots)
uint8_t Sats;
int8_t Temp; // Si4032 temperature, as a signed value (-128 to +128, though sensor limited to -64 to +64 deg C)
uint8_t BattVoltage; // 0 = 0v, 255 = 5.0V, linear steps in-between.
uint16_t Checksum; // CRC16-CCITT Checksum.
}; // __attribute__ ((packed)); // Doesn't work?
#pragma pack(pop)
// Function Definitions
void collect_telemetry_data();
void send_rtty_packet();
void send_mfsk_packet();
void send_morse_ident();
uint16_t gps_CRC16_checksum (char *string);
/**
* GPS data processing
*/
void USART1_IRQHandler(void) {
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {
ublox_handle_incoming_byte((uint8_t) USART_ReceiveData(USART1));
}else if (USART_GetITStatus(USART1, USART_IT_ORE) != RESET) {
USART_ReceiveData(USART1);
} else {
USART_ReceiveData(USART1);
}
}
//
// Symbol Timing Interrupt
// In here symbol transmission occurs.
//
void TIM2_IRQHandler(void) {
static int mfsk_symbol = 0;
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
if (ALLOW_DISABLE_BY_BUTTON){
if (ADCVal[1] > adc_bottom){
button_pressed++;
if (button_pressed > (BAUD_RATE / 3)){
disable_armed = 1;
GPIO_SetBits(GPIOB, RED);
//GPIO_SetBits(GPIOB, GREEN);
}
} else {
if (disable_armed){
GPIO_SetBits(GPIOA, GPIO_Pin_12);
}
button_pressed = 0;
}
if (button_pressed == 0) {
adc_bottom = ADCVal[1] * 1.1; // dynamical reference for power down level
}
}
if (tx_on) {
// RTTY Symbol selection logic.
if(current_mode == RTTY){
send_rtty_status = send_rtty((char *) tx_buffer);
if (!disable_armed){
if (send_rtty_status == rttyEnd) {
if (led_enabled) GPIO_SetBits(GPIOB, RED);
if (*(++tx_buffer) == 0) {
tx_on = 0;
// Reset the TX Delay counter, which is decremented at the symbol rate.
tx_on_delay = TX_DELAY / (1000/BAUD_RATE);
tx_enable = 0;
// If we're not in continuous mode, disable the transmitter now.
#ifndef CONTINUOUS_MODE
radio_disable_tx();
#endif
}
} else if (send_rtty_status == rttyOne) {
radio_rw_register(0x73, RTTY_DEVIATION, 1);
if (led_enabled) GPIO_SetBits(GPIOB, RED);
} else if (send_rtty_status == rttyZero) {
radio_rw_register(0x73, 0x00, 1);
if (led_enabled) GPIO_ResetBits(GPIOB, RED);
}
}
} else if (current_mode == MFSK) {
// 4FSK Symbol Selection Logic
// Get Symbol to transmit.
#ifdef MFSK_4_ENABLED
mfsk_symbol = send_4fsk(tx_buffer[current_mfsk_byte]);
#elif MFSK_16_ENABLED
mfsk_symbol = send_16fsk(tx_buffer[current_mfsk_byte]);
#endif
if(mfsk_symbol == -1){
// Reached the end of the current character, increment the current-byte pointer.
if (current_mfsk_byte++ == packet_length) {
// End of the packet. Reset Counters and stop modulation.
radio_rw_register(0x73, 0x03, 1); // Idle at Symbol 3
current_mfsk_byte = 0;
tx_on = 0;
// Reset the TX Delay counter, which is decremented at the symbol rate.
tx_on_delay = TX_DELAY / (1000/BAUD_RATE);
tx_enable = 0;
// If we're not in continuous mode, disable the transmitter now.
#ifndef CONTINUOUS_MODE
radio_disable_tx();
#endif
} else {
// We've now advanced to the next byte, grab the first symbol from it.
#ifdef MFSK_4_ENABLED
mfsk_symbol = send_4fsk(tx_buffer[current_mfsk_byte]);
#elif MFSK_16_ENABLED
mfsk_symbol = send_16fsk(tx_buffer[current_mfsk_byte]);
#endif
}
}
// Set the symbol!
if(mfsk_symbol != -1){
radio_rw_register(0x73, (uint8_t)mfsk_symbol, 1);
}
} else if (current_mode == FSK_2) {
// 2FSK Symbol Selection Logic
// Get Symbol to transmit.
mfsk_symbol = send_2fsk(tx_buffer[current_mfsk_byte]);
if(mfsk_symbol == -1){
// Reached the end of the current character, increment the current-byte pointer.
if (current_mfsk_byte++ == packet_length) {
// End of the packet. Reset Counters and stop modulation.
radio_rw_register(0x73, 0x00, 1); // Idle at Symbol 0.
current_mfsk_byte = 0;
tx_on = 0;
// Reset the TX Delay counter, which is decremented at the symbol rate.
tx_on_delay = TX_DELAY / (1000/BAUD_RATE);
tx_enable = 0;
} else {
// We've now advanced to the next byte, grab the first symbol from it.
mfsk_symbol = send_2fsk(tx_buffer[current_mfsk_byte]);
}
}
// Set the symbol!
if(mfsk_symbol != -1){
radio_rw_register(0x73, (uint8_t)mfsk_symbol, 1);
}
} else{
// Ummmm.
}
}else{
// TX is off
// If we are don't have RTTY enabled, and if we have CONTINUOUS_MODE set,
// transmit continuous MFSK symbols.
#ifndef RTTY_ENABLED
if(continuous_mode){
#ifdef MFSK_4_ENABLED
mfsk_symbol = (mfsk_symbol+1)%4;
#elif MFSK_16_ENABLED
mfsk_symbol = (mfsk_symbol+1)%16;
#endif
radio_rw_register(0x73, (uint8_t)mfsk_symbol, 1);
}
#endif
}
// Delay between Transmissions Logic.
// tx_on_delay is set at the end of a RTTY transmission above, and counts down
// at the interrupt rate. When it hits zero, we set tx_enable to 1, which allows
// the main loop to continue.
if (!tx_on && --tx_on_delay == 0) {
tx_enable = 1;
tx_on_delay--;
}
// Pip transmission logic.
// Only enabled if Continuous mode is disabled!
#ifdef TX_PIP
#ifndef CONTINUOUS_MODE
if ((tx_enable == 0) && (tx_on_delay%tx_pip)==TX_PIP_SYMBOLS){
radio_rw_register(0x73, 0x00, 1);
radio_enable_tx();
} else if ((tx_enable == 0) && (tx_on_delay%tx_pip)==0){
radio_disable_tx();
}
#endif
#endif
// Green LED Blinking Logic
if (--cun == 0) {
if (pun) {
// Clear Green LED.
if (led_enabled) GPIO_SetBits(GPIOB, GREEN);
pun = 0;
} else {
// If we have GPS lock, set LED
if (flaga & 0x80) {
if (led_enabled) GPIO_ResetBits(GPIOB, GREEN);
}
pun = 1;
}
// Wait 200 symbols.
cun = 200;
}
}
}
int main(void) {
#ifdef DEBUG
debug();
#endif
RCC_Conf();
NVIC_Conf();
init_port();
init_timer(BAUD_RATE);
delay_init();
ublox_init();
GPIO_SetBits(GPIOB, RED);
// NOTE - Green LED is inverted. (Reset to activate, Set to deactivate)
GPIO_SetBits(GPIOB, GREEN);
USART_SendData(USART3, 0xc);
radio_soft_reset();
// setting RTTY TX frequency
radio_set_tx_frequency(TRANSMIT_FREQUENCY);
// setting TX power
radio_rw_register(0x6D, 00 | (TX_POWER & 0x0007), 1);
// initial RTTY modulation
radio_rw_register(0x71, 0x00, 1);
// Temperature Value Offset
radio_rw_register(0x13, 0x00, 1); // Was 0xF0 (?)
// Temperature Sensor Calibration
radio_rw_register(0x12, 0x20, 1);
// ADC configuration
radio_rw_register(0x0f, 0x80, 1);
tx_buffer = buf_rtty;
tx_on = 0;
tx_enable = 1;
// Why do we have to do this again?
spi_init();
radio_set_tx_frequency(TRANSMIT_FREQUENCY);
radio_rw_register(0x71, 0x00, 1);
init_timer(BAUD_RATE);
// WARNING WARNING WARNING
// As per the Si4032 datasheet, the synthesizer's VCO is only calibrated when it is enabled,
// not continuously throughout transmissions. If it is enabled, and there is a significant temperature change,
// the transmitter *will* drift off frequency.
// The fix appears to be to briefly disable, then re-enable the transmitter, which forces a re-calibration.
radio_enable_tx();
while (1) {
// Don't do anything until the previous transmission has finished.
if (tx_on == 0 && tx_enable) {
if (current_mode == STARTUP){
// Grab telemetry information.
collect_telemetry_data();
// Now Startup a RTTY Transmission
current_mode = RTTY;
// If enabled, transmit a RTTY packet.
#ifdef RTTY_ENABLED
send_rtty_packet();
#endif
} else if (current_mode == RTTY){
// We've just transmitted a RTTY packet, now configure for 4FSK.
current_mode = MFSK;
#if defined(MFSK_4_ENABLED) || defined(MFSK_16_ENABLED)
radio_enable_tx();
send_mfsk_packet();
#endif
} else {
// We've finished the 4FSK transmission, grab new data.
current_mode = STARTUP;
radio_disable_tx();
#ifdef MORSE_IDENT
if(send_count%MORSE_IDENT == 0){
send_morse_ident();
}
#endif
#ifdef DEEP_SLEEP
// Deep Sleep mode!
// Only enter deep sleep mode if we have a valid GPS lock and position, and we are
// tracking a decent amount of sats.
if (gpsData.gpsFixOK == 1 && gpsData.sats_raw >=6){
// Turn off Green LED
GPIO_SetBits(GPIOB, GREEN);
led_enabled = 0;
// Pause the GPS
ublox_gps_stop();
gpsData.lat_raw = 0;
gpsData.lon_raw = 0;
gpsData.fix = 0;
deep_sleep_timer = DEEP_SLEEP*60*1000;
while(deep_sleep_timer > 0){
// Turn off LED
led_enabled = 0;
// User lowest tone for each pip.
radio_rw_register(0x73, 0x00, 1);
// Send a pip
if( (deep_sleep_timer % DEEP_SLEEP_PIPS) == 0){
radio_enable_tx();
_delay_ms(50);
radio_disable_tx();
}
// Sleep
// TODO: How do we make this a non-busy-wait sleep?
_delay_ms(1000);
deep_sleep_timer = deep_sleep_timer - 1000;
}
// Restart the GPS
ublox_gps_start();
_delay_ms(1000);
// Wait for GPS lock
while(1){
ublox_get_last_data(&gpsData);
if(gpsData.gpsFixOK == 1){
radio_enable_tx();
_delay_ms(1000);
break;
}
// Double pip to indicate we are awaiting GPS lock.
radio_enable_tx();
_delay_ms(20);
radio_disable_tx();
_delay_ms(50);
radio_enable_tx();
_delay_ms(20);
radio_disable_tx();
_delay_ms(2000);
}
}
#endif
}
} else {
NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
__WFI();
}
}
}
void collect_telemetry_data() {
// Assemble and proccess the telemetry data we need to construct our RTTY and MFSK packets.
send_count++;
si4032_temperature = radio_read_temperature();
voltage = ADCVal[0] * 600 / 4096;
ublox_get_last_data(&gpsData);
if (gpsData.gpsFixOK == 1) {
// If we have a good fix, we can enter power-saving mode
#ifdef UBLOX_POWERSAVE
if ((gpsData.sats_raw >= 6) && (entered_psm == 0)){
ubx_powersave();
entered_psm = 1;
}
#endif
flaga |= 0x80;
// Disable LEDs if altitude is > 1000m. (Power saving? Maybe?)
if ((gpsData.alt_raw / 1000) > 1000){
led_enabled = 0;
} else {
led_enabled = 1;
}
} else {
// No GPS fix.
flaga &= ~0x80;
led_enabled = 1; // Enable LEDs when there is no GPS fix (i.e. during startup)
// Null out lat / lon data to avoid spamming invalid positions all over the map.
gpsData.lat_raw = 0;
gpsData.lon_raw = 0;
}
}
void send_rtty_packet() {
int n;
// Write a RTTY packet into the tx buffer, and start transmission.
// Convert raw lat/lon values into degrees and decimal degree values.
uint8_t lat_d = (uint8_t) abs(gpsData.lat_raw / 10000000);
uint32_t lat_fl = (uint32_t) abs(abs(gpsData.lat_raw) - lat_d * 10000000) / 1000;
uint8_t lon_d = (uint8_t) abs(gpsData.lon_raw / 10000000);
uint32_t lon_fl = (uint32_t) abs(abs(gpsData.lon_raw) - lon_d * 10000000) / 1000;
uint8_t speed_kph = (uint8_t)((float)gpsData.speed_raw*0.0036);
// Add onto the sats_raw value to indicate if the GPS is in regular tracking (+100)
// or power optimized tracker (+200) modes.
uint8_t sats_state = gpsData.sats_raw;
if(gpsData.psmState == 1){
sats_state += 100;
} else if(gpsData.psmState == 2){
sats_state += 200;
}
// Produce a RTTY Sentence (Compatible with the existing HORUS RTTY payloads)
n = sprintf(buf_rtty, "\n\n\n\n$$$$$%s,%d,%02u:%02u:%02u,%s%d.%04"PRId32",%s%d.%04" PRId32 ",%"PRId32",%d,%d,%d,%d",
callsign,
send_count,
gpsData.hours, gpsData.minutes, gpsData.seconds,
gpsData.lat_raw < 0 ? "-" : "", lat_d, lat_fl,
gpsData.lon_raw < 0 ? "-" : "", lon_d, lon_fl,
(gpsData.alt_raw / 1000),
speed_kph,
sats_state,
voltage*10,
si4032_temperature
);
// Calculate and append CRC16 checksum to end of sentence.
CRC_rtty = string_CRC16_checksum(buf_rtty + 9);
sprintf(buf_rtty + n, "*%04X\n", CRC_rtty & 0xffff);
// Point the TX buffer at the temporary RTTY packet buffer.
tx_buffer = buf_rtty;
// Enable the radio, and set the tx_on flag to 1.
start_bits = RTTY_PRE_START_BITS;
radio_enable_tx();
tx_on = 1;
// From here the timer interrupt handles things.
}
void send_mfsk_packet(){
// Generate a MFSK Binary Packet
//packet_length = mfsk_test_bits(buf_mfsk);
// Sanitise and convert some of the data.
if(gpsData.alt_raw < 0){
gpsData.alt_raw = 0;
}
float float_lat = (float)gpsData.lat_raw / 10000000.0;
float float_lon = (float)gpsData.lon_raw / 10000000.0;
uint8_t volts_scaled = (uint8_t)(255*(float)voltage/500.0);
// Assemble a binary packet
struct TBinaryPacket BinaryPacket;
BinaryPacket.PayloadID = BINARY_PAYLOAD_ID%256;
BinaryPacket.Counter = send_count;
BinaryPacket.Hours = gpsData.hours;
BinaryPacket.Minutes = gpsData.minutes;
BinaryPacket.Seconds = gpsData.seconds;
BinaryPacket.Latitude = float_lat;
BinaryPacket.Longitude = float_lon;
BinaryPacket.Altitude = (uint16_t)(gpsData.alt_raw/1000);
BinaryPacket.Speed = (uint8_t)((float)gpsData.speed_raw*0.036); // Using NAV-VELNED gSpeed, which is in cm/s. Convert to kph.
// Temporary pDOP info, to determine suitable pDOP limits.
// float pDop = (float)gpsData.pDOP/10.0;
// if (pDop>255.0){
// pDop = 255.0;
// }
// BinaryPacket.Speed = (uint8_t)pDop;
BinaryPacket.BattVoltage = volts_scaled;
BinaryPacket.Sats = gpsData.sats_raw;
BinaryPacket.Temp = si4032_temperature;
// Add onto the sats_raw value to indicate if the GPS is in regular tracking (+100)
// or power optimized tracker (+200) modes.
if(gpsData.psmState == 1){
BinaryPacket.Sats += 100;
} else if(gpsData.psmState == 2){
BinaryPacket.Sats += 200;
}
BinaryPacket.Checksum = (uint16_t)array_CRC16_checksum((char*)&BinaryPacket,sizeof(BinaryPacket)-2);
#ifdef MFSKDEBUG
// Write BinaryPacket into the RTTY transmit buffer as hex
memcpy(buf_mfsk,&BinaryPacket,sizeof(struct TBinaryPacket));
sprintf(buf_rtty,"$$$$");
print_hex(buf_mfsk, sizeof(struct TBinaryPacket), buf_rtty+4);
//Configure for transmit
tx_buffer = buf_rtty;
// Enable the radio, and set the tx_on flag to 1.
start_bits = RTTY_PRE_START_BITS;
radio_enable_tx();
current_mode = RTTY;
tx_on = 1;
// Wait until transmit has finished.
while(tx_on){
NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
__WFI();
}
current_mode = MFSK;
#endif
#ifdef CONTINUOUS_MODE
// Write Preamble characters into mfsk buffer.
sprintf(buf_mfsk, "\x1b\x1b\x1b\x1b");
// Encode the packet, and write into the mfsk buffer.
int coded_len = horus_l2_encode_tx_packet((unsigned char*)buf_mfsk+4,(unsigned char*)&BinaryPacket,sizeof(BinaryPacket));
#else
// Double length preamble to help the decoder lock-on after a quiet period.
// Write Preamble characters into mfsk buffer.
sprintf(buf_mfsk, "\x1b\x1b\x1b\x1b\x1b\x1b\x1b\x1b");
// Encode the packet, and write into the mfsk buffer.
int coded_len = horus_l2_encode_tx_packet((unsigned char*)buf_mfsk+8,(unsigned char*)&BinaryPacket,sizeof(BinaryPacket));
#endif
#ifdef MFSKDEBUG
// Write the coded packet into the RTTY transmit buffer as hex
sprintf(buf_rtty,"$$$$");
print_hex(buf_mfsk, coded_len+4, buf_rtty+4);
//Configure for transmit
tx_buffer = buf_rtty;
// Enable the radio, and set the tx_on flag to 1.
start_bits = RTTY_PRE_START_BITS;
radio_enable_tx();
current_mode = RTTY;
tx_on = 1;
// Wait until transmit has finished.
while(tx_on){
NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
__WFI();
}
current_mode = MFSK;
// Wait until tx_enable
while(tx_enable == 0){
NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
__WFI();
}
_delay_ms(1000);
#endif
// Data to transmit is the coded packet length, plus the preamble.
#ifdef CONTINUOUS_MODE
packet_length = coded_len+4;
#else
packet_length = coded_len+8;
#endif
tx_buffer = buf_mfsk;
// Enable the radio, and set the tx_on flag to 1.
radio_enable_tx();
tx_on = 1;
}
void send_morse_ident(){
continuous_mode = 0;
radio_rw_register(0x73, 0x00, 1);
radio_inhibit_tx();
_delay_ms(500);
sendMorse(MORSE_MESSAGE);
_delay_ms(500);
#ifdef CONTINUOUS_MODE
continuous_mode = 1;
#endif
}
#ifdef DEBUG
void assert_failed(uint8_t* file, uint32_t line)
{
while (1);
}
#endif