-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhw3.tex
executable file
·379 lines (343 loc) · 13.6 KB
/
hw3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Friday, September 16, 2016 20:39:00}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{Language=American English}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
% $\powset[k]{S}$ stands for the set of all $k$-element subsets of
% $S$. The argument $k$ is optional, and if not provided, the result
% is the whole powerset of $S$.
\newcommand{\set}[1]{\left\{ #1 \right\}}
% $\set{...}$ yields $\left\{ ... \right\}$.
\newcommand{\abs}[1]{\left| #1 \right|}
% $\abs{...}$ yields $\left| ... \right|$.
\newcommand{\tup}[1]{\left( #1 \right)}
% $\tup{...}$ yields $\left( ... \right)$.
\newcommand{\ive}[1]{\left[ #1 \right]}
% $\ive{...}$ yields $\left[ ... \right]$.
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
% $\verts{...}$ yields $\operatorname{V}\left( ... \right)$.
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
% $\edges{...}$ yields $\operatorname{E}\left( ... \right)$.
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
% $\arcs{...}$ yields $\operatorname{A}\left( ... \right)$.
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
% $\underbrack{...1}{...2}$ yields
% $\underbrace{...1}_{\substack{...2}}$. This is useful for doing
% local rewriting transformations on mathematical expressions with
% justifications.
\ihead{Math 5707 Spring 2017 (Darij Grinberg): homework set 3}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\begin{center}
\textbf{Math 5707 Spring 2017 (Darij Grinberg): homework set 3}
%\textbf{due: Wed, 8 Mar 2017, in class} or by email
%(\texttt{dgrinber@umn.edu}) before class
\textbf{Please hand in solutions to FIVE of the 8 problems.}
%{\color{red}
%(If you hand in more, the grader will choose five to grade.)}
\end{center}
See the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes}
and also the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/}{handwritten notes}
for relevant material.
Also, some definitions can be found in
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf}{the solutions to hw2}.
If you reference results from the lecture notes, please \textbf{mention the date and time} of the version of the notes you are using (as the numbering changes during updates).
If $v$ is a vertex of a simple graph $G = \tup{V, E}$, then the
\textit{eccentricity} of $v$ is defined to be
$\max \set{ d\tup{v, u} \mid u \in V }$ (where $d\tup{v, u}$ is the
distance between $v$ and $u$, as usual). A \textit{center} of a simple
graph $G$ means a vertex whose eccentricity is minimum (among the
eccentricities of all vertices).
\begin{exercise} \label{exe.hw3.centerlp}
Let $T$ be a tree. Let $\tup{v_0, v_1, \ldots, v_k}$ be a longest path
of $T$. Prove that each center of $T$ belongs to this path (i.e., is
one of the vertices $v_0, v_1, \ldots, v_k$).
\end{exercise}
\begin{exercise} \label{exe.hw3.countST}
\textbf{(a)} Consider the cycle graph $C_n$ for some $n \geq 2$. Its
vertices are $1, 2, \ldots, n$, and its edges are $12, 23, \ldots,
\tup{n-1}n, n1$. (Here is how it looks for $n = 5$:
\[
\xymatrix{
& & 1 \ar@{-}[rrd] \\
5 \ar@{-}[rru] \ar@{-}[rd] & & & & 2 \ar@{-}[ld] \\
& 4 \ar@{-}[rr] & & 3
}
\]
)
Find the number of spanning trees of $C_n$.
\textbf{(b)} Consider the directed cycle graph $\overrightarrow{C}_n$
for some $n \geq 2$. It is a digraph; its vertices are
$1, 2, \ldots, n$, and its arcs are $12, 23, \ldots, \tup{n-1}n, n1$.
(Here is how it looks for $n = 5$:
\[
\xymatrix{
& & 1 \ar[rrd] \\
5 \ar[rru] & & & & 2 \ar[ld] \\
& 4 \ar[lu] & & 3 \ar[ll]
}
\]
)
Find the number of oriented spanning trees of $\overrightarrow{C}_n$
with root $1$.
\textbf{(c)} Fix $m \geq 1$. Let $G$ be the simple graph with $3m+2$
vertices
\[
a, b, x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m, z_1, z_2, \ldots,
z_m
\]
and the following $3m+3$ edges:
\begin{align*}
& ax_1, ay_1, az_1, \\
& x_i x_{i+1}, y_i y_{i+1}, z_i z_{i+1} \qquad \text{ for all }
i \in \set{1, 2, \ldots, m-1}, \\
& x_m b, y_m b, z_m b .
\end{align*}
(Thus, the graph consists of two vertices $a$ and $b$ connected by
three paths, each of length $m+1$, with no overlaps between the paths
except for their starting and ending points. Here is a picture for
$m = 3$:
\[
\xymatrix{
& x_1 \ar@{-}[r] & x_2 \ar@{-}[r] & x_3 \ar@{-}[dr] \\
a \ar@{-}[r] \ar@{-}[ru] \ar@{-}[rd] & y_1 \ar@{-}[r] & y_2 \ar@{-}[r] & y_3 \ar@{-}[r] & b \\
& z_1 \ar@{-}[r] & z_2 \ar@{-}[r] & z_3 \ar@{-}[ru]
}
\]
)
Compute the number of spanning trees of $G$.
[To argue why your number is correct, a sketch of the argument in 1-2
sentences should be enough; a fully rigorous proof is not required.]
\end{exercise}
\begin{exercise} \label{exe.hw3.conn}
If $G$ is a multigraph, then $\operatorname{conn} G$ shall denote the
number of connected components of $G$. (Note that this is $0$ when $G$
has no vertices, and $1$ if $G$ is connected.)
Let $\tup{V, H, \phi}$ be a multigraph. Let $E$ and $F$ be two
subsets of $H$.
\textbf{(a)} Prove that
\begin{align}
& \operatorname{conn} \tup{V, E, \phi\mid_E}
+ \operatorname{conn} \tup{V, F, \phi\mid_F} \nonumber \\
& \leq
\operatorname{conn} \tup{V, E \cup F, \phi\mid_{E \cup F}}
+ \operatorname{conn} \tup{V, E \cap F, \phi\mid_{E \cap F}} .
\label{eq.exe.hw3.conn.ineq}
\end{align}
[Feel free to restrict yourself to the case of a simple graph; in this
case, $E$ and $F$ are two subsets of $\powset[2]{V}$, and you have to
show that
\[
\operatorname{conn} \tup{V, E} + \operatorname{conn} \tup{V, F}
\leq \operatorname{conn} \tup{V, E \cup F}
+ \operatorname{conn} \tup{V, E \cap F} .
\]
This isn't any easier than the general case, but saves you the hassle
of carrying the map $\phi$ around.
Also, feel free to take inspiration from the
\href{http://math.stackexchange.com/questions/500511/dimension-of-the-sum-of-two-vector-subspaces}{proof
of the classical fact that
$\dim X + \dim Y = \dim \tup{X + Y} + \dim \tup{X \cap Y}$ when $X$
and $Y$ are two subspaces of a finite-dimensional vector space $U$}.
That proof relies on choosing a basis of $X \cap Y$ and extending it
to bases of $X$ and $Y$, then merging the extended bases to a basis of
$X + Y$. A ``basis'' of a multigraph $G$ is a spanning forest: a
spanning subgraph that is a forest and has the same number of
connected components as $G$. More precisely, it is the set of the
edges of a spanning forest.]
\textbf{(b)} Give an example where the inequality
\eqref{eq.exe.hw3.conn.ineq} does \textbf{not} become an equality.
\end{exercise}
\begin{exercise} \label{exe.hw3.whamilton}
Let $T$ be a tree having more than $1$ vertex.
Let $L$ be the set of leaves of $T$. Prove that it
is possible to add $\abs{L}-1$ new edges to $T$ in such a way that
the resulting multigraph has a Hamiltonian cycle.
\end{exercise}
If $u$ and $v$ are two vertices of a digraph $G$, then
$d \tup{u, v}$ denotes the \textit{distance} from $u$ to $v$. This
is defined to be the minimum length of a path from $u$ to $v$ if
such a path exists; otherwise it is defined to be the symbol $\infty$.
Notice that $d \tup{u, v}$ is not usually the same as $d \tup{v, u}$
(unlike for simple graphs).
\begin{exercise} \label{exe.hw3.d+d+d.directed}
Let $a$, $b$ and $c$ be three vertices of a strongly connected
digraph $G = \tup{V, A}$ such that $\abs{V} \geq 4$.
\textbf{(a)} Prove that
$d \tup{b, c} + d \tup{c, a} + d \tup{a, b} \leq 3 \abs{V} - 4$.
\textbf{(b)} For each $n \geq 5$, construct an example in which
$\abs{V} = n$ and
$d \tup{b, c} + d \tup{c, a} + d \tup{a, b} = 3 \abs{V} - 4$.
(No proof required for the example.)
\end{exercise}
Recall that a \textit{$k$-coloring} of a simple graph $G = \tup{V, E}$
means a map $f : V \to \set{1, 2, \ldots, k}$. Such a $k$-coloring $f$
is said to be \textit{proper} if no two adjacent vertices $u$ and $v$
have the same color (i.e., satisfy $f \tup{u} = f \tup{v}$).
\begin{exercise} \label{exe.hw3.not-tripar}
We have learned that a simple graph $G$ (or multigraph $G$)
has a proper $2$-coloring if
and only if all cycles of $G$ have even length.
\textbf{(a)} Is it true that if all cycles of a simple graph $G$ (or
multigraph $G$) have length divisible by $3$, then $G$ has a proper
$3$-coloring?
\textbf{(b)} Is it true that if a simple graph $G$ has a proper
$3$-coloring, then all cycles of $G$ have length divisible by $3$ ?
\end{exercise}
\begin{exercise} \label{exe.hw3.turan}
In class, we have proven the following fact: If $G = \tup{V, E}$ is a
simple graph, then $G$ has an independent set of size
$\geq \dfrac{n}{1+d}$, where $n = \abs{V}$ and
$d = \dfrac{1}{n} \sum_{v \in V} \deg v$. (Notice that $d$ is simply
the average degree of a vertex of $G$.)
Use this to prove Tur\'an's theorem (Theorem 2.5.15 in the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes}).
\end{exercise}
\begin{exercise}
\textbf{Extra credit:}
In this exercise, ``number'' means (e.g.) a real number. (Feel
free to restrict yourself to positive integers if it helps you.
The most general interpretation would be ``element of a commutative
ring'', but you don't need to work in this generality.)
For any $n$ numbers $x_1, x_2, \ldots, x_n$, we define
$v\left(x_1, x_2, \ldots, x_n\right)$ to be the number
\[
\prod_{1\leq i<j\leq n} \left( x_j - x_i \right)
=
\det \tup{ \tup{ x_j^{i-1} }_{1\leq i\leq n, \ 1\leq j\leq n } } .
\]
Let $x_1, x_2, \ldots, x_n$ be $n$ numbers. Let $t$
be a further number.
Prove
at least one of the following facts combinatorially
(i.e., without using any properties of the determinant
other than its definition as a sum over permutations):
\textbf{(a)} We have
\[
\sum_{k=1}^{n} v\left( x_{1},x_{2},\ldots,x_{k-1},x_{k}+t,x_{k+1}%
,x_{k+2},\ldots,x_{n}\right)
= n v\left( x_{1},x_{2},\ldots,x_{n}\right) .
\]
\textbf{(b)} For each $m\in\left\{ 0,1,\ldots,n-1\right\} $, we have
\[
\sum_{k=1}^{n}x_{k}^{m}v\left( x_{1},x_{2},\ldots,x_{k-1},t,x_{k+1}%
,x_{k+2},\ldots,x_{n}\right)
= t^{m}v\left( x_{1},x_{2},\ldots,x_{n}\right)
.
\]
\textbf{(c)} We have
\begin{align*}
& \sum_{k=1}^{n}x_{k}v\left( x_{1},x_{2},\ldots,x_{k-1},x_{k}+t,x_{k+1}%
,x_{k+2},\ldots,x_{n}\right) \\
& =\left( \dbinom{n}{2}t+\sum_{k=1}^{n}x_{k}\right) v\left( x_{1}%
,x_{2},\ldots,x_{n}\right) .
\end{align*}
\end{exercise}
\end{document}