-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path5707lec16.tex
executable file
·3537 lines (3057 loc) · 163 KB
/
5707lec16.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
\usepackage{amsfonts}
\usepackage{graphicx}%
\setcounter{MaxMatrixCols}{30}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Friday, May 27, 2022 09:11:59}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\conn}{\operatorname{conn}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand{\tup}[1]{\left( #1 \right)}
\newcommand{\ive}[1]{\left[ #1 \right]}
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
\newcommand{\are}{\ar@{-}}
\newcommand{\arebi}[1][]{\ar@{<-}@/_/[#1] \ar@/^/[#1]}
\newcommand{\of}{\text{ of }}
\ihead{Math 5707 Spring 2017 (Darij Grinberg): Lecture 16}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\title{UMN, Spring 2017, Math 5707: Lecture 16 (flows and cuts in networks)}
\author{Darij Grinberg}
\date{digitized and updated version,
%TCIMACRO{\TeXButton{TeX field}{\today}}%
%BeginExpansion
\today
%EndExpansion
}
\maketitle
\tableofcontents
\section{Network flows}
\subsection{Introduction}
We shall now study the basics of the theory of network flows. We will barely
scratch the surface; for a more comprehensive survey, see Schrijver's
\cite[Chapter 4]{Schrij17}. Also, \cite[\S 8.2]{Martin17} gives a neat
introduction, and \cite{ForFul62} is the classical text on the subject. Also,
\cite{Thalwi08} appears to be a thorough treatment of the subject with lots of
technical details. See also the \textquotedblleft Lecture notes on maximum
flows and minimum cut problems\textquotedblright\ in \cite{Goeman17}.
We shall mostly follow \cite[\S 8.2]{Martin17}. In particular, we will only
use elementary methods. More advanced disciplines (such as linear optimization
and polyhedral geometry) offer alternative points of view on the theory of
network flows; we shall ignore these. We shall also ignore real-life
applications, although there are many (see \cite[Chapter 4]{Schrij17} for a
few, and see \cite[\S 2]{Schrij12} for the Cold War origins of the subject).
We let $\mathbb{N}$ denote the set $\left\{ 0,1,2,\ldots\right\} $ of all
nonnegative integers.
We let $\mathbb{Q}_{+}$ denote the set $\left\{ x\in\mathbb{Q}\mid
x\geq0\right\} $ of all nonnegative rational numbers.
We let $\mathbb{R}_{+}$ denote the set $\left\{ x\in\mathbb{R}\mid
x\geq0\right\} $ of all nonnegative real numbers.
\subsection{The concept of a network}
Recall that a \textit{digraph} is defined to be a pair $\left( V,A\right) $
consisting of a finite set $V$ and of a subset $A$ of $V\times V$. The
elements of $V$ are called the \textit{vertices} of this digraph; the elements
of $A$ are called its \textit{arcs}. If $a=\left( u,v\right) $ is an arc of
a digraph $\left( V,A\right) $, then $u$ is called the \textit{source} of
this arc $a$, and $v$ is called the \textit{target} of this arc $a$.
The whole theory of network flows can just as well be built on the concept of
a multidigraph instead of a digraph. But we shall restrict ourselves to
digraphs for the sake of simplicity. (Also, the basic results for
multidigraphs can be easily derived from the corresponding results for
digraphs; so we aren't even sacrificing any real power.)
\begin{definition}
\label{def.network.basics}A \textit{network} consists of:
\begin{itemize}
\item a digraph $\left( V,A\right) $;
\item two distinct vertices $s\in V$ and $t\in V$, called the \textit{source}
and the \textit{sink}, respectively (although we do not require $s$ to have
indegree $0$ or $t$ to have outdegree $0$);
\item a function $c:A\rightarrow\mathbb{Q}_{+}$, called the \textit{capacity
function}.
\end{itemize}
\end{definition}
\begin{definition}
\label{def.network.notations}Let $N$ be a network consisting of a digraph
$\left( V,A\right) $, a source $s\in V$ and a sink $t\in V$, and a capacity
function $c:A\rightarrow\mathbb{Q}_{+}$. Then, we define the following notations:
\begin{itemize}
\item For any arc $a\in A$, we call the number $c\left( a\right)
\in\mathbb{Q}_{+}$ the \textit{capacity} of the arc $a$.
\item For any subset $S$ of $V$, we let $\overline{S}$ denote the subset
$V\setminus S$ of $V$.
\item If $P$ and $Q$ are two subsets of $V$, then $\left[ P,Q\right] $ shall
mean the set of all arcs $a\in A$ whose source belongs to $P$ and whose target
belongs to $Q$. (In other words, $\left[ P,Q\right] =A\cap\left( P\times
Q\right) $.)
\item If $P$ and $Q$ are two subsets of $V$, and if $d:A\rightarrow
\mathbb{Q}_{+}$ is any function, then the number $d\left( P,Q\right)
\in\mathbb{Q}_{+}$ is defined by
\[
d\left( P,Q\right) =\sum_{a\in\left[ P,Q\right] }d\left( a\right) .
\]
\end{itemize}
\end{definition}
We draw a network $N$ (with notations as in Definition
\ref{def.network.notations}) as follows: We first draw the digraph $\left(
V,A\right) $ (with source $s$ and sink $t$ marked as such), and then we write
the capacity $c\left( a\right) $ of each arc $a\in A$ atop the arc. For
example, the picture%
\begin{equation}%
%TCIMACRO{\TeXButton{network}{\xymatrix@C=7pc@R=5pc{
%s = 1 \ar[r]^2 \ar[dr]_1 & 3 \ar[r]^1 \ar[dr]_2 & 2 \ar[r]^2 & 5 \ar
%[dl]_1 \ar[dr]^2 \\
%& 7 \ar[r]_3 & 4 \ar[u]^1 \ar[r]_1 & 6 \ar[r]_1 & 8 = t
%}} }%
%BeginExpansion
\xymatrix@C=7pc@R=5pc{
s = 1 \ar[r]^2 \ar[dr]_1 & 3 \ar[r]^1 \ar[dr]_2 & 2 \ar[r]^2 & 5 \ar
[dl]_1 \ar[dr]^2 \\
& 7 \ar[r]_3 & 4 \ar[u]^1 \ar[r]_1 & 6 \ar[r]_1 & 8 = t
}
%EndExpansion
\label{eq.network.example.1}%
\end{equation}
represents a network $N$ whose underlying digraph $\left( V,A\right) $ has
$8$ vertices \newline$1,2,3,4,5,6,7,8$ and $11$ arcs \newline$\left(
1,3\right) ,\left( 1,7\right) ,\left( 3,2\right) ,\left( 3,4\right)
,\left( 7,4\right) ,\left( 4,2\right) ,\left( 2,5\right) ,\left(
4,6\right) ,\left( 5,4\right) ,\left( 5,8\right) ,\left( 6,8\right) $,
with $1$ chosen as source and $8$ chosen as sink, and with capacities given by
$c\left( \left( 1,3\right) \right) =2$, $c\left( \left( 1,7\right)
\right) =1$, $c\left( \left( 3,2\right) \right) =1$ etc.
\subsection{The concept of a flow}
\begin{definition}
\label{def.flow.def}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}.
A \textit{flow (on the network }$N$\textit{)} means a function $f:A\rightarrow
\mathbb{Q}_{+}$ with the following properties:
\begin{itemize}
\item We have $0\leq f\left( a\right) \leq c\left( a\right) $ for all
$a\in A$. This is called the \textit{capacity constraints}.
\item For any vertex $v\in V\setminus\left\{ s,t\right\} $, we have%
\[
f^{-}\left( v\right) =f^{+}\left( v\right) ,
\]
where the rational numbers $f^{-}\left( v\right) $ and $f^{+}\left(
v\right) $ are defined as follows:%
\[
f^{-}\left( v\right) =\sum_{\substack{a\in A\text{ is an arc}\\\text{with
target }v}}f\left( a\right) \ \ \ \ \ \ \ \ \ \ \text{and}%
\ \ \ \ \ \ \ \ \ \ f^{+}\left( v\right) =\sum_{\substack{a\in A\text{ is an
arc}\\\text{with source }v}}f\left( a\right) .
\]
This is called the \textit{conservation constraints}.
\end{itemize}
\end{definition}
We can visualize a network $N$ as a collection of water pipes (the pipes are
the arcs $a\in A$; the capacity $c\left( a\right) $ of a pipe $a$ is how
much water it can maximally transport in a second); then, a flow $f$ on $N$
can be visualized as water flowing through the pipes (namely, the amount of
water traveling through a pipe $a$ in a second is $f\left( a\right) $). The
capacity constraints say that no pipe is over its capacity or carries a
negative amount of water\footnote{Notice that each pipe has a pre-determined
direction; water can only flow in that direction!}. The conservation
constraints say that at every vertex $v$ other than $s$ and $t$, the amount of
water coming in (that is, $f^{-}\left( v\right) $) equals the amount of
water moving out (that is, $f^{+}\left( v\right) $); that is, there are no
leaks and no water being injected into the system other than at $s$ and $t$.
This is why $s$ is called the \textquotedblleft source\textquotedblright\ and
$t$ is the \textquotedblleft sink\textquotedblright\footnote{although these
words are not to be taken fully at face value: it is possible that the source
has more water coming in than moving out, and that the sink has more water
moving out than coming in}.
To draw a flow $f$ on a network $N$ (with notations as in Definition
\ref{def.network.notations}), we proceed in the same way as when drawing the
network $N$ itself, but instead of writing the capacity $c\left( a\right) $
atop each arc $a\in A$, we write \textquotedblleft$f\left( a\right) $ of
$c\left( a\right) $\textquotedblright\ atop each arc $a\in A$. For example,
here is a flow $f$ on the network $N$ shown on (\ref{eq.network.example.1}):%
\begin{equation}%
%TCIMACRO{\TeXButton{network with flow}{\xymatrix@C=7pc@R=5pc{
%s = 1 \ar[r]^{1 \of2} \ar[dr]_{1 \of1} & 3 \ar[r]^{1 \of1} \ar[dr]_{0 \of2}
%& 2 \ar[r]^{2 \of2} & 5 \ar[dl]_{1 \of1} \ar[dr]^{1 \of2} \\
%& 7 \ar[r]_{1 \of3} & 4 \ar[u]^{1 \of1} \ar[r]_{1 \of1} & 6 \ar[r]_{1 \of1}
%& 8 = t
%}} }%
%BeginExpansion
\xymatrix@C=7pc@R=5pc{
s = 1 \ar[r]^{1 \of2} \ar[dr]_{1 \of1} & 3 \ar[r]^{1 \of1} \ar[dr]_{0 \of2}
& 2 \ar[r]^{2 \of2} & 5 \ar[dl]_{1 \of1} \ar[dr]^{1 \of2} \\
& 7 \ar[r]_{1 \of3} & 4 \ar[u]^{1 \of1} \ar[r]_{1 \of1} & 6 \ar[r]_{1 \of1}
& 8 = t
}
%EndExpansion
\label{eq.flow.example.1}%
\end{equation}
(so, for example, $f\left( \left( 1,3\right) \right) =1$, $f\left(
\left( 2,5\right) \right) =2$ and $f\left( \left( 3,4\right) \right)
=0$).
Let us make a definition (which we already made temporarily in Definition
\ref{def.flow.def}):
\begin{definition}
\label{def.f-f+}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Let $f:A\rightarrow\mathbb{Q}_{+}$ be any map.
Let $v\in V$. Then, we define two rational numbers $f^{-}\left( v\right)
\in\mathbb{Q}_{+}$ and $f^{+}\left( v\right) \in\mathbb{Q}_{+}$ as follows:%
\[
f^{-}\left( v\right) =\sum_{\substack{a\in A\text{ is an arc}\\\text{with
target }v}}f\left( a\right) \ \ \ \ \ \ \ \ \ \ \text{and}%
\ \ \ \ \ \ \ \ \ \ f^{+}\left( v\right) =\sum_{\substack{a\in A\text{ is an
arc}\\\text{with source }v}}f\left( a\right) .
\]
(We may call $f^{-}\left( v\right) $ the \textit{inflow} of $f$ into $v$,
and we may call $f^{+}\left( v\right) $ the \textit{outflow} of $f$ from $v$.)
\end{definition}
We can now define the \textit{value} of a flow:
\begin{definition}
\label{def.flow.value}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Let $f:A\rightarrow\mathbb{Q}_{+}$ be a flow on
$N$.
The \textit{value} of the flow $f$ is defined to be the number $f^{+}\left(
s\right) -f^{-}\left( s\right) $. It is denoted by $\left\vert f\right\vert
$.
\end{definition}
For example, the value of the flow $f$ shown in (\ref{eq.flow.example.1}) is
$\left\vert f\right\vert =f^{+}\left( s\right) -f^{-}\left( s\right)
=2-0=2$.
\begin{proposition}
\label{prop.1}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Let $f:A\rightarrow\mathbb{Q}_{+}$ be a flow on
$N$. Then,%
\begin{align}
\left\vert f\right\vert & =f^{+}\left( s\right) -f^{-}\left( s\right)
\label{eq.prop.1.1}\\
& =f^{-}\left( t\right) -f^{+}\left( t\right) . \label{eq.prop.1.2}%
\end{align}
\end{proposition}
\begin{proof}
[Proof of Proposition \ref{prop.1} (sketched).]The definition of $\left\vert
f\right\vert $ yields $\left\vert f\right\vert =f^{+}\left( s\right)
-f^{-}\left( s\right) $. It thus remains to show that $\left\vert
f\right\vert =f^{-}\left( t\right) -f^{+}\left( t\right) $.
Each arc $a\in A$ has exactly one source. Thus,%
\begin{equation}
\sum_{a\in A}f\left( a\right) =\sum_{v\in V}\underbrace{\sum_{\substack{a\in
A\text{ is an arc}\\\text{with source }v}}f\left( a\right) }%
_{\substack{=f^{+}\left( v\right) \\\text{(by the definition of }%
f^{+}\left( v\right) \text{)}}}=\sum_{v\in V}f^{+}\left( v\right) .
\label{pf.prop.1.inflow}%
\end{equation}
Similarly,%
\begin{equation}
\sum_{a\in A}f\left( a\right) =\sum_{v\in V}f^{-}\left( v\right) .
\label{pf.prop.1.outflow}%
\end{equation}
Comparing this with (\ref{pf.prop.1.inflow}), we obtain%
\[
\sum_{v\in V}f^{+}\left( v\right) =\sum_{v\in V}f^{-}\left( v\right) .
\]
Hence,%
\begin{equation}
\sum_{v\in V}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
=\underbrace{\sum_{v\in V}f^{+}\left( v\right) }_{=\sum_{v\in V}f^{-}\left(
v\right) }-\sum_{v\in V}f^{-}\left( v\right) =0. \label{pf.prop.1.2}%
\end{equation}
But the conservation constraints (which hold, since $f$ is a flow) say that
for any vertex $v\in V\setminus\left\{ s,t\right\} $, we have%
\begin{equation}
f^{-}\left( v\right) =f^{+}\left( v\right) . \label{pf.prop.1.cons}%
\end{equation}
Now, recall that $s$ and $t$ are distinct elements of $V$. Hence, we can split
off the addends for $v=s$ and for $v=t$ from the sum $\sum_{v\in V}\left(
f^{+}\left( v\right) -f^{-}\left( v\right) \right) $. We thus obtain%
\begin{align*}
& \sum_{v\in V}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
\\
& =\underbrace{\left( f^{+}\left( s\right) -f^{-}\left( s\right)
\right) }_{=\left\vert f\right\vert }+\left( f^{+}\left( t\right)
-f^{-}\left( t\right) \right) +\sum_{v\in V\setminus\left\{ s,t\right\}
}\underbrace{\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
}_{\substack{=0\\\text{(by (\ref{pf.prop.1.cons}))}}}\\
& =\left\vert f\right\vert +\left( f^{+}\left( t\right) -f^{-}\left(
t\right) \right) .
\end{align*}
Comparing this with (\ref{pf.prop.1.2}), we find $\left\vert f\right\vert
+\left( f^{+}\left( t\right) -f^{-}\left( t\right) \right) =0$. Thus,%
\[
\left\vert f\right\vert =-\left( f^{+}\left( t\right) -f^{-}\left(
t\right) \right) =f^{-}\left( t\right) -f^{+}\left( t\right) .
\]
This completes the proof of Proposition \ref{prop.1}.
\end{proof}
For the next proposition, let us recall the conventions we made in Definition
\ref{def.network.notations}. In particular, if $S$ is any subset of $V$ (where
notations as in Definition \ref{def.network.notations}), then $\overline{S}$
denotes the complement $V\setminus S$ of $S$. Also, for any two subsets $P$
and $Q$ of $V$ and any map $d:A\rightarrow\mathbb{Q}_{+}$, we have $d\left(
P,Q\right) =\sum_{a\in\left[ P,Q\right] }d\left( a\right) $.
\begin{proposition}
\label{prop.2}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Let $f:A\rightarrow\mathbb{Q}_{+}$ be a flow on
$N$. Let $S$ be a subset of $V$.
\textbf{(a)} We have%
\[
f\left( S,\overline{S}\right) -f\left( \overline{S},S\right) =\sum_{v\in
S}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right) .
\]
\textbf{(b)} If $s\in S$ and $t\notin S$, then%
\[
\left\vert f\right\vert =f\left( S,\overline{S}\right) -f\left(
\overline{S},S\right) .
\]
\textbf{(c)} If $s\in S$ and $t\notin S$, then $\left\vert f\right\vert \leq
c\left( S,\overline{S}\right) $.
\textbf{(d)} Assume that $s\in S$ and $t\notin S$. Then, $\left\vert
f\right\vert =c\left( S,\overline{S}\right) $ if and only if%
\begin{equation}
\left( f\left( a\right) =0\text{ for all }a\in\left[ \overline
{S},S\right] \right) \label{eq.prop.2.d.b.1}%
\end{equation}
and%
\begin{equation}
\left( f\left( a\right) =c\left( a\right) \text{ for all }a\in\left[
S,\overline{S}\right] \right) . \label{eq.prop.2.d.b.2}%
\end{equation}
\end{proposition}
\begin{proof}
[Proof of Proposition \ref{prop.2} (sketched).]\textbf{(a)} We have%
\begin{align}
& \sum_{v\in S}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
\nonumber\\
& =\sum_{v\in S}\underbrace{f^{+}\left( v\right) }_{\substack{=\sum
_{\substack{a\in A\text{ is an arc}\\\text{with source }v}}f\left( a\right)
\\\text{(by the definition of }f^{+}\left( v\right) \text{)}}}-\sum_{v\in
S}\underbrace{f^{-}\left( v\right) }_{\substack{=\sum_{\substack{a\in
A\text{ is an arc}\\\text{with target }v}}f\left( a\right) \\\text{(by the
definition of }f^{-}\left( v\right) \text{)}}}\nonumber\\
& =\underbrace{\sum_{v\in S}\sum_{\substack{a\in A\text{ is an arc}%
\\\text{with source }v}}}_{\substack{=\sum_{\substack{a\in A\text{ is an
arc}\\\text{with source in }S}}}}f\left( a\right) -\underbrace{\sum_{v\in
S}\sum_{\substack{a\in A\text{ is an arc}\\\text{with target }v}%
}}_{\substack{=\sum_{\substack{a\in A\text{ is an arc}\\\text{with target in
}S}}}}f\left( a\right) \nonumber\\
& =\sum_{\substack{a\in A\text{ is an arc}\\\text{with source in }S}}f\left(
a\right) -\sum_{\substack{a\in A\text{ is an arc}\\\text{with target in }%
S}}f\left( a\right) . \label{pf.prop.2.a.1}%
\end{align}
But recall that $\overline{S}$ denotes the complement $V\setminus S$ of $S$.
Thus, any vertex in $V$ must lie either in $S$ or in $\overline{S}$ (but not
in both). Hence, any arc $a\in A$ must either have target in $S$ or target in
$\overline{S}$ (but not both). Hence, the sum $\sum_{\substack{a\in A\text{ is
an arc}\\\text{with source in }S}}f\left( a\right) $ can be split as
follows:
\begin{align}
& \sum_{\substack{a\in A\text{ is an arc}\\\text{with source in }S}}f\left(
a\right) \nonumber\\
& =\underbrace{\sum_{\substack{a\in A\text{ is an arc}\\\text{with source in
}S\\\text{and target in }S}}}_{\substack{=\sum_{a\in\left[ S,S\right]
}\\\text{(by the definition of }\left[ S,S\right] \text{)}}}f\left(
a\right) +\underbrace{\sum_{\substack{a\in A\text{ is an arc}\\\text{with
source in }S\\\text{and target in }\overline{S}}}}_{\substack{=\sum
_{a\in\left[ S,\overline{S}\right] }\\\text{(by the definition of }\left[
S,\overline{S}\right] \text{)}}}f\left( a\right) \nonumber\\
& =\sum_{a\in\left[ S,S\right] }f\left( a\right) +\sum_{a\in\left[
S,\overline{S}\right] }f\left( a\right) . \label{pf.prop.2.a.2}%
\end{align}
Similarly, we can split $\sum_{\substack{a\in A\text{ is an arc}\\\text{with
target in }S}}f\left( a\right) $ according to whether the source (not the
target this time) of an arc lies in $S$ or in $\overline{S}$. We thus obtain%
\begin{equation}
\sum_{\substack{a\in A\text{ is an arc}\\\text{with target in }S}}f\left(
a\right) =\sum_{a\in\left[ S,S\right] }f\left( a\right) +\sum
_{a\in\left[ \overline{S},S\right] }f\left( a\right) .
\label{pf.prop.2.a.3}%
\end{equation}
Now, (\ref{pf.prop.2.a.1}) becomes%
\begin{align*}
& \sum_{v\in S}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
\\
& =\underbrace{\sum_{\substack{a\in A\text{ is an arc}\\\text{with source in
}S}}f\left( a\right) }_{\substack{=\sum_{a\in\left[ S,S\right] }f\left(
a\right) +\sum_{a\in\left[ S,\overline{S}\right] }f\left( a\right)
\\\text{(by (\ref{pf.prop.2.a.2}))}}}-\underbrace{\sum_{\substack{a\in A\text{
is an arc}\\\text{with target in }S}}f\left( a\right) }_{\substack{=\sum
_{a\in\left[ S,S\right] }f\left( a\right) +\sum_{a\in\left[ \overline
{S},S\right] }f\left( a\right) \\\text{(by (\ref{pf.prop.2.a.3}))}}}\\
& =\left( \sum_{a\in\left[ S,S\right] }f\left( a\right) +\sum
_{a\in\left[ S,\overline{S}\right] }f\left( a\right) \right) -\left(
\sum_{a\in\left[ S,S\right] }f\left( a\right) +\sum_{a\in\left[
\overline{S},S\right] }f\left( a\right) \right) \\
& =\sum_{a\in\left[ S,\overline{S}\right] }f\left( a\right) -\sum
_{a\in\left[ \overline{S},S\right] }f\left( a\right) .
\end{align*}
Comparing this with%
\[
\underbrace{f\left( S,\overline{S}\right) }_{\substack{=\sum_{a\in\left[
S,\overline{S}\right] }f\left( a\right) \\\text{(by the definition of
}f\left( S,\overline{S}\right) \text{)}}}-\underbrace{f\left( \overline
{S},S\right) }_{\substack{=\sum_{a\in\left[ \overline{S},S\right] }f\left(
a\right) \\\text{(by the definition of }f\left( \overline{S},S\right)
\text{)}}}=\sum_{a\in\left[ S,\overline{S}\right] }f\left( a\right)
-\sum_{a\in\left[ \overline{S},S\right] }f\left( a\right) ,
\]
we obtain $f\left( S,\overline{S}\right) -f\left( \overline{S},S\right)
=\sum_{v\in S}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
$. This proves Proposition \ref{prop.2} \textbf{(a)}.
\textbf{(b)} Assume that $s\in S$ and $t\notin S$. Thus, $S\setminus\left\{
s,t\right\} =S\setminus\left\{ s\right\} $ (since $t\notin S$).
We can split off the addend for $v=s$ from the sum $\sum_{v\in S}\left(
f^{+}\left( v\right) -f^{-}\left( v\right) \right) $ (since $s\in S$). We
thus obtain%
\[
\sum_{v\in S}\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
=\underbrace{\left( f^{+}\left( s\right) -f^{-}\left( s\right) \right)
}_{=\left\vert f\right\vert }+\sum_{v\in S\setminus\left\{ s\right\}
}\underbrace{\left( f^{+}\left( v\right) -f^{-}\left( v\right) \right)
}_{\substack{=0\\\text{(by (\ref{pf.prop.1.cons})}\\\text{(since }v\in
S\setminus\left\{ s\right\} =S\setminus\left\{ s,t\right\} \subseteq
V\setminus\left\{ s,t\right\} \text{))}}}=\left\vert f\right\vert .
\]
Hence,%
\[
\left\vert f\right\vert =\sum_{v\in S}\left( f^{+}\left( v\right)
-f^{-}\left( v\right) \right) =f\left( S,\overline{S}\right) -f\left(
\overline{S},S\right)
\]
(by Proposition \ref{prop.2} \textbf{(a)}). This proves Proposition
\ref{prop.2} \textbf{(b)}.
\textbf{(c)} Assume that $s\in S$ and $t\notin S$. The definition of $f\left(
S,\overline{S}\right) $ yields%
\begin{equation}
f\left( S,\overline{S}\right) =\sum_{a\in\left[ S,\overline{S}\right]
}\underbrace{f\left( a\right) }_{\substack{\leq c\left( a\right)
\\\text{(by the capacity}\\\text{constraints)}}}\leq\sum_{a\in\left[
S,\overline{S}\right] }c\left( a\right) =c\left( S,\overline{S}\right)
\label{pf.prop.2.b.1}%
\end{equation}
(since $c\left( S,\overline{S}\right) $ is defined to be $\sum_{a\in\left[
S,\overline{S}\right] }c\left( a\right) $). The definition of $f\left(
\overline{S},S\right) $ yields%
\begin{equation}
f\left( \overline{S},S\right) =\sum_{a\in\left[ \overline{S},S\right]
}\underbrace{f\left( a\right) }_{\substack{\geq0\\\text{(by the
capacity}\\\text{constraints)}}}\geq\sum_{a\in\left[ \overline{S},S\right]
}0=0. \label{pf.prop.2.b.2}%
\end{equation}
Proposition \ref{prop.2} \textbf{(b)} yields%
\[
\left\vert f\right\vert =\underbrace{f\left( S,\overline{S}\right)
}_{\substack{\leq c\left( S,\overline{S}\right) \\\text{(by
(\ref{pf.prop.2.b.1}))}}}-\underbrace{f\left( \overline{S},S\right)
}_{\substack{\geq0\\\text{(by (\ref{pf.prop.2.b.2}))}}}\leq c\left(
S,\overline{S}\right) -0=c\left( S,\overline{S}\right) .
\]
This proves Proposition \ref{prop.2} \textbf{(c)}.
\textbf{(d)} Let us analyze our above proof of Proposition \ref{prop.2}
\textbf{(c)}. We have obtained the inequality (\ref{pf.prop.2.b.1}) by adding
together the inequalities $f\left( a\right) \leq c\left( a\right) $ for
all $a\in\left[ S,\overline{S}\right] $. Thus, the inequality
(\ref{pf.prop.2.b.1}) becomes an equality if and only if all of the latter
inequalities $f\left( a\right) \leq c\left( a\right) $ for all
$a\in\left[ S,\overline{S}\right] $ become equalities. Hence, we have the
following chain of equivalences:%
\begin{align*}
& \ \left( \text{the inequality (\ref{pf.prop.2.b.1}) becomes an
equality}\right) \\
& \Longleftrightarrow\ \left( \text{all of the inequalities }f\left(
a\right) \leq c\left( a\right) \text{ for all }a\in\left[ S,\overline
{S}\right] \text{ become equalities}\right) \\
& \Longleftrightarrow\ \left( f\left( a\right) =c\left( a\right) \text{
for all }a\in\left[ S,\overline{S}\right] \right) .
\end{align*}
We have obtained the inequality (\ref{pf.prop.2.b.2}) by adding together the
inequalities $f\left( a\right) \geq0$ for all $a\in\left[ \overline
{S},S\right] $. Thus, the inequality (\ref{pf.prop.2.b.2}) becomes an
equality if and only if all of the latter inequalities $f\left( a\right)
\geq0$ for all $a\in\left[ \overline{S},S\right] $ become equalities. Hence,
we have the following chain of equivalences:%
\begin{align*}
& \ \left( \text{the inequality (\ref{pf.prop.2.b.2}) becomes an
equality}\right) \\
& \Longleftrightarrow\ \left( \text{all of the inequalities }f\left(
a\right) \geq0\text{ for all }a\in\left[ \overline{S},S\right] \text{
become equalities}\right) \\
& \Longleftrightarrow\ \left( f\left( a\right) =0\text{ for all }%
a\in\left[ \overline{S},S\right] \right) .
\end{align*}
But we have proven the inequality $\left\vert f\right\vert \leq c\left(
S,\overline{S}\right) $ by subtracting the inequality (\ref{pf.prop.2.b.2})
from the inequality (\ref{pf.prop.2.b.1}). Thus, the inequality $\left\vert
f\right\vert \leq c\left( S,\overline{S}\right) $ becomes an equality if and
only if both inequalities (\ref{pf.prop.2.b.2}) and (\ref{pf.prop.2.b.1})
become equalities. Hence, we have the following chain of equivalences:%
\begin{align*}
& \ \left( \text{the inequality }\left\vert f\right\vert \leq c\left(
S,\overline{S}\right) \text{ becomes an equality}\right) \\
& \Longleftrightarrow\ \left( \text{both inequalities (\ref{pf.prop.2.b.2})
and (\ref{pf.prop.2.b.1}) become equalities}\right) \\
& \Longleftrightarrow\ \underbrace{\left( \text{the inequality
(\ref{pf.prop.2.b.1}) becomes an equality}\right) }_{\Longleftrightarrow
\ \left( f\left( a\right) =c\left( a\right) \text{ for all }a\in\left[
S,\overline{S}\right] \right) }\\
& \ \ \ \ \ \ \ \ \ \ \wedge\ \underbrace{\left( \text{the inequality
(\ref{pf.prop.2.b.2}) becomes an equality}\right) }_{\Longleftrightarrow
\ \left( f\left( a\right) =0\text{ for all }a\in\left[ \overline
{S},S\right] \right) }\\
& \Longleftrightarrow\ \underbrace{\left( f\left( a\right) =c\left(
a\right) \text{ for all }a\in\left[ S,\overline{S}\right] \right)
}_{\Longleftrightarrow\ \left( \text{(\ref{eq.prop.2.d.b.2}) holds}\right)
}\wedge\underbrace{\left( f\left( a\right) =0\text{ for all }a\in\left[
\overline{S},S\right] \right) }_{\Longleftrightarrow\ \left(
\text{(\ref{eq.prop.2.d.b.1}) holds}\right) }\\
& \Longleftrightarrow\ \left( \text{(\ref{eq.prop.2.d.b.2}) holds}\right)
\wedge\left( \text{(\ref{eq.prop.2.d.b.1}) holds}\right) \\
& \Longleftrightarrow\ \left( \text{both (\ref{eq.prop.2.d.b.1}) and
(\ref{eq.prop.2.d.b.2}) hold}\right) .
\end{align*}
In other words, the inequality $\left\vert f\right\vert \leq c\left(
S,\overline{S}\right) $ becomes an equality if and only if both
(\ref{eq.prop.2.d.b.1}) and (\ref{eq.prop.2.d.b.2}) hold. In other words,
$\left\vert f\right\vert =c\left( S,\overline{S}\right) $ if and only if
both (\ref{eq.prop.2.d.b.1}) and (\ref{eq.prop.2.d.b.2}) hold. This proves
Proposition \ref{def.flow.def} \textbf{(d)}.
\end{proof}
\begin{remark}
Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Let $f:A\rightarrow\mathbb{Q}_{+}$ be a flow on
$N$. Assume that $\left( v,v\right) \notin A$. Then, it is easy to see that
$f^{+}\left( v\right) =f\left( \left\{ v\right\} ,\overline{\left\{
v\right\} }\right) $ and $f^{-}\left( v\right) =f\left( \overline
{\left\{ v\right\} },\left\{ v\right\} \right) $.
\end{remark}
\subsection{Cuts in networks}
\begin{definition}
\label{def.cuts}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}.
\textbf{(a)} An $s$\textit{-}$t$\textit{-cutting subset of }$V$ shall mean a
subset $S$ of $V$ satisfying $s\in S$ and $t\notin S$.
\textbf{(b)} A \textit{cut of }$N$ shall mean a subset of $A$ having the form
$\left[ S,\overline{S}\right] $ for some $s$-$t$-cutting subset $S$ of $V$.
\textbf{(c)} The \textit{capacity} of a cut $\left[ S,\overline{S}\right] $
is defined to be $c\left( S,\overline{S}\right) $. (Note that this is indeed
well-defined: In fact, $c\left( S,\overline{S}\right) =\sum_{a\in\left[
S,\overline{S}\right] }c\left( a\right) $ clearly depends only on the cut
$\left[ S,\overline{S}\right] $ rather than on the set $S$.)
\end{definition}
For example, if $N$ is the network shown in (\ref{eq.network.example.1}), then
$\left\{ 1,3,4\right\} $ is an $s$-$t$-cutting subset; the cut $\left[
\left\{ 1,3,4\right\} ,\overline{\left\{ 1,3,4\right\} }\right] $
corresponding to this subset is $\left\{ \left( 1,7\right) ,\left(
3,2\right) ,\left( 4,2\right) ,\left( 4,6\right) \right\} $ and has
capacity%
\begin{align*}
c\left( \left\{ 1,3,4\right\} ,\overline{\left\{ 1,3,4\right\} }\right)
& =\sum_{a\in\left\{ \left( 1,7\right) ,\left( 3,2\right) ,\left(
4,2\right) ,\left( 4,6\right) \right\} }c\left( a\right) \\
& =\underbrace{c\left( \left( 1,7\right) \right) }_{=1}%
+\underbrace{c\left( \left( 3,2\right) \right) }_{=1}+\underbrace{c\left(
\left( 4,2\right) \right) }_{=1}+\underbrace{c\left( \left( 4,6\right)
\right) }_{=1}=4.
\end{align*}
We can illustrate this cut by drawing all arcs belonging to the cut as double
arrows ($\Longrightarrow$):%
\[%
%TCIMACRO{\TeXButton{network with cut}{\xymatrix@C=7pc@R=5pc{
%\boxed{s = 1} \ar[r]^2 \ar@{=>}[dr]_1 & \boxed{3} \ar@{=>}[r]^1 \ar
%[dr]_2 & 2 \ar[r]^2 & 5 \ar[dl]_1 \ar[dr]^2 \\
%& 7 \ar[r]_3 & \boxed{4} \ar@{=>}[u]^1 \ar@{=>}[r]_1 & 6 \ar[r]_1 & 8 = t
%}}}%
%BeginExpansion
\xymatrix@C=7pc@R=5pc{
\boxed{s = 1} \ar[r]^2 \ar@{=>}[dr]_1 & \boxed{3} \ar@{=>}[r]^1 \ar
[dr]_2 & 2 \ar[r]^2 & 5 \ar[dl]_1 \ar[dr]^2 \\
& 7 \ar[r]_3 & \boxed{4} \ar@{=>}[u]^1 \ar@{=>}[r]_1 & 6 \ar[r]_1 & 8 = t
}%
%EndExpansion
\]
(where the vertices in $\left\{ 1,3,4\right\} $ have been marked by boxes).
Notice that every network $N$ (with notations as in Definition
\ref{def.network.notations}) has two special cuts: the first is the cut
\[
\left[ \left\{ s\right\} ,\overline{\left\{ s\right\} }\right] =\left\{
a\in A\ \mid\ \text{the source of }a\text{ is }s\text{, but the target is
not}\right\}
\]
corresponding to the $s$-$t$-cutting subset $\left\{ s\right\} $; the second
is the cut%
\[
\left[ \overline{\left\{ t\right\} },\left\{ t\right\} \right] =\left\{
a\in A\ \mid\ \text{the target of }a\text{ is }t\text{, but the source is
not}\right\}
\]
corresponding to the $s$-$t$-cutting subset $\overline{\left\{ t\right\} }$.
\subsection{The max-flow-min-cut theorems}
Proposition \ref{prop.2} \textbf{(c)} thus says that the value of a flow is
always $\leq$ to the capacity of a cut. But can we achieve equality?
One of the most important results in combinatorics -- the
\textit{max-flow-min-cut theorem} -- says that \textquotedblleft
yes\textquotedblright: In each network, we can find a flow and a cut such that
the value of the flow equals the capacity of the cut. More precisely, there
are three \textquotedblleft max-flow-min-cut theorems\textquotedblright,
corresponding to different kinds of flows. The first one is about the kind of
flows we have defined above:
\begin{theorem}
\label{thm.3a}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Then,%
\begin{equation}
\max\left\{ \left\vert f\right\vert \ \mid\ f\text{ is a flow}\right\}
=\min\left\{ c\left( S,\overline{S}\right) \ \mid\ S\subseteq V;\ s\in
S;\ t\notin S\right\} . \label{eq.thm.3a.1}%
\end{equation}
In particular, the left-hand side of this equation is well-defined (i.e.,
there exists a flow $f$ for which $\left\vert f\right\vert $ is maximum). (Of
course, the right-hand side of (\ref{eq.thm.3a.1}) is well-defined, because
there are only finitely many subsets $S$ of $V$ satisfying $s\in S$ and
$t\notin S$.)
\end{theorem}
The equality (\ref{eq.thm.3a.1}) in Theorem \ref{thm.3a} says that the maximum
value of a flow equals the minimum value of $c\left( S,\overline{S}\right) $
where $S$ ranges over the $s$-$t$-cutting subsets of $V$. In other words, the
maximum value of a flow equals the minimum capacity of a cut.
Another variant of the max-flow-min-cut theorem makes the same claim about
\textit{integer flows} -- i.e., flows $f:A\rightarrow\mathbb{Q}_{+}$ such that
every arc $a\in A$ satisfies $f\left( a\right) \in\mathbb{N}$. Accordingly,
it requires that the capacities $c\left( a\right) $ of arcs also are
integers. Let us state it precisely:
\begin{definition}
Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. An \textit{integer flow} means a flow
$f:A\rightarrow\mathbb{Q}_{+}$ satisfying $\left( f\left( a\right)
\in\mathbb{N}\text{ for each }a\in A\right) $.
\end{definition}
\begin{theorem}
\label{thm.3b}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}. Assume that $c\left( a\right) \in\mathbb{N}$
for each $a\in A$. Then,%
\begin{align*}
& \max\left\{ \left\vert f\right\vert \ \mid\ f\text{ is an integer
flow}\right\} \\
& =\min\left\{ c\left( S,\overline{S}\right) \ \mid\ S\subseteq V;\ s\in
S;\ t\notin S\right\} .
\end{align*}
In particular, the left-hand side of this equation is well-defined (i.e.,
there exists a flow $f$ for which $\left\vert f\right\vert $ is maximum).
\end{theorem}
Finally, a third variant (which we shall not prove) makes the same statement
as Theorem \ref{thm.3a} but with $\mathbb{Q}_{+}$ replaced by $\mathbb{R}_{+}$:
\begin{theorem}
\label{thm.3c}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}, except that $c$ is now a map $A\rightarrow
\mathbb{R}_{+}$ instead of being a map $A\rightarrow\mathbb{Q}_{+}$. (That is,
the capacities of arcs are now allowed to be irrational.) Also, let us
temporarily modify the definition of a flow in such a way that a flow is a map
$A\rightarrow\mathbb{R}_{+}$ instead of being a map $A\rightarrow
\mathbb{Q}_{+}$. Then,%
\[
\max\left\{ \left\vert f\right\vert \ \mid\ f\text{ is a flow}\right\}
=\min\left\{ c\left( S,\overline{S}\right) \ \mid\ S\subseteq V;\ s\in
S;\ t\notin S\right\} .
\]
In particular, the left-hand side of this equation is well-defined (i.e.,
there exists a flow $f$ for which $\left\vert f\right\vert $ is maximum).
\end{theorem}
There are various proofs of these three theorems. In particular, Theorem
\ref{thm.3a} and Theorem \ref{thm.3c} can be viewed as an application of
\textit{linear programming duality}, a fundamental principle in linear
optimization. We will instead proceed elementarily. Along the way, we will see
how to \textbf{construct} a flow $f$ maximizing $\left\vert f\right\vert $ and
an $s$-$t$-cutting subset $S$ minimizing $c\left( S,\overline{S}\right) $
(two problems that occur in real life).
\subsection{The residual digraph}
First, let us define the so-called \textit{residual digraph} of a flow:
\begin{definition}
\label{def.Df}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}.
\textbf{(a)} If $a$ is a pair $\left( u,v\right) \in V\times V$, then we let
$a^{-1}$ denote the pair $\left( v,u\right) \in V\times V$. (This is simply
a suggestive notation; it has nothing to do with reciprocals of numbers.) We
call $a^{-1}$ the \textit{reversal} of the arc $a$. Notice that $\left(
a^{-1}\right) ^{-1}=a$ for each $a\in V\times V$.
\textbf{(b)} Let $f:A\rightarrow\mathbb{Q}_{+}$ be any flow on $N$. We define
the \textit{residual digraph }$D_{f}$ to be the digraph $\left(
V,A_{f}\right) $, where%
\[
A_{f}=\left\{ a\in A\ \mid\ f\left( a\right) <c\left( a\right) \right\}
\cup\left\{ a^{-1}\ \mid\ a\in A;\ f\left( a\right) >0\right\} .
\]
\end{definition}
Notice that the residual digraph $D_{f}$ is not a sub-digraph of $\left(
V,A\right) $; indeed, it can have more arcs than $\left( V,A\right) $ has.
(When $a\in A$ is an arc of $\left( V,A\right) $, there is no guarantee that
$a^{-1}$ is also an arc of $\left( V,A\right) $.)
\begin{example}
Let $f$ be the following flow:%
\[%
%TCIMACRO{\TeXButton{network with flow}{\xymatrix@C=7pc@R=5pc{
%s = 1 \ar[r]^{1 \of2} \ar[dr]_{1 \of3} & 2 \ar[r]^{0 \of1} \ar[dr]^{1 \of1}
%& 4 \ar[dr]^{0 \of1} \\
%& 3 \ar[r]_{1 \of2} & 5 \ar[r]_{2 \of2} & 6 = t
%}}}%
%BeginExpansion
\xymatrix@C=7pc@R=5pc{
s = 1 \ar[r]^{1 \of2} \ar[dr]_{1 \of3} & 2 \ar[r]^{0 \of1} \ar[dr]^{1 \of1}
& 4 \ar[dr]^{0 \of1} \\
& 3 \ar[r]_{1 \of2} & 5 \ar[r]_{2 \of2} & 6 = t
}%
%EndExpansion
\]
(where, as before, we write \textquotedblleft$f\left( a\right) $ of
$c\left( a\right) $\textquotedblright\ atop each arc $a$). Then, the
residual digraph $D_{f}$ is%
\[%
%TCIMACRO{\TeXButton{residual digraph}{\xymatrix@C=7pc@R=5pc{
%s = 1 \ar@/^1pc/[r] \ar@/_3pc/[dr] & 2 \ar[r] \ar@/^1pc/[l] & 4 \ar[dr] \\
%& 3 \ar@/^1pc/[lu] \ar@/^1pc/[r] & 5 \ar@/^1pc/[l] \ar[lu] & 6 = t \ar[l]
%}}}%
%BeginExpansion
\xymatrix@C=7pc@R=5pc{
s = 1 \ar@/^1pc/[r] \ar@/_3pc/[dr] & 2 \ar[r] \ar@/^1pc/[l] & 4 \ar[dr] \\
& 3 \ar@/^1pc/[lu] \ar@/^1pc/[r] & 5 \ar@/^1pc/[l] \ar[lu] & 6 = t \ar[l]
}%
%EndExpansion
.
\]
Notice that $D_{f}$ has cycles even though $\left( V,A\right) $ has none!
\end{example}
The intuition for the digraph $D_{f}$ is that $D_{f}$ shows the
\textquotedblleft wiggle-room\textquotedblright\ for modifying $f$ without
breaking the capacity constraints (ignoring, for the time being, the
conservation constraints). Indeed, the arcs of the digraph $D_{f}$ are the
arcs $a\in A$ satisfying $f\left( a\right) <c\left( a\right) $ (that is,
the arcs $a$ used under their capacity in $f$) as well as the reverses of the
arcs $a\in A$ satisfying $f\left( a\right) >0$ (that is, of the arcs $a$
that have nonzero flow going through them). The former arcs can afford an
increase in the flow going through them (without violating the capacity
constraints), whereas the latter arcs can afford a reduction in the flow
through them. Of course, if we modify the flow on a single arc, then we will
most likely break the conservation constraints. The key to finding a maximum
flow is thus to change a flow in such a way that both capacity and
conservation constraints are preserved; the residual digraph $D_{f}$ is merely
the first step.
\subsection{The augmenting path lemma}
Recall that if $s$ and $t$ are two vertices of a digraph $D$, then a
\textit{walk} from $s$ to $t$ in $D$ means a sequence $\left( v_{0}%
,v_{1},\ldots,v_{k}\right) $, where $v_{0},v_{1},\ldots,v_{k}$ are vertices
of $D$ satisfying $v_{0}=s$ and $v_{k}=t$, and where $v_{i}v_{i+1}$ is an arc
of $D$ for each $i\in\left\{ 0,1,\ldots,k-1\right\} $. The \textit{arcs} of
this walk are defined to be the arcs $v_{0}v_{1},v_{1}v_{2},\ldots
,v_{k-1}v_{k}$ of $D$. A walk $\left( v_{0},v_{1},\ldots,v_{k}\right) $ from
$s$ to $t$ in a digraph $D$ is said to be a \textit{path} from $s$ to $t$ if
the vertices $v_{0},v_{1},\ldots,v_{k}$ are distinct.
The main workhorse of our proof will be the following lemma:
\begin{lemma}
\label{lem.4}Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}.
Let $f:A\rightarrow\mathbb{Q}_{+}$ be a flow.
\textbf{(a)} If the digraph $D_{f}$ has a path from $s$ to $t$, then there is
a flow $f^{\prime}$ with a larger value than $f$.
\textbf{(b)} If the digraph $D_{f}$ has no path from $s$ to $t$, then there
exists a subset $S$ of $V$ satisfying $s\in V$ and $t\notin V$ and $c\left(
S,\overline{S}\right) =\left\vert f\right\vert $.
\end{lemma}
Before we prove this, we need to lay some more groundwork.
\begin{definition}
Let $N$, $V$, $A$, $s$, $t$ and $c$ be as in Definition
\ref{def.network.notations}.
\textbf{(a)} We identify the maps $g:A\rightarrow\mathbb{Q}$ satisfying
$\left( g\left( a\right) \geq0\text{ for all }a\in A\right) $ (that is,
the maps $g:A\rightarrow\mathbb{Q}$ satisfying $g\left( A\right)
\subseteq\mathbb{Q}_{+}$) with the maps $A\rightarrow\mathbb{Q}_{+}$.
\textbf{(b)} We extend the notations $f^{-}\left( v\right) $ and
$f^{+}\left( v\right) $ from Definition \ref{def.f-f+} to arbitrary maps
$f:A\rightarrow\mathbb{Q}$ (not just maps $f:A\rightarrow\mathbb{Q}_{+}$). Of
course, $f^{-}\left( v\right) $ and $f^{+}\left( v\right) $ will then be
elements of $\mathbb{Q}$, not necessarily of $\mathbb{Q}_{+}$.
We also extend the notation $\left\vert f\right\vert $ from Definition
\ref{def.flow.value} to arbitrary maps $f:A\rightarrow\mathbb{Q}$ (not just
flows). Thus, $\left\vert f\right\vert =f^{+}\left( s\right) -f^{-}\left(
s\right) $ for any map $f:A\rightarrow\mathbb{Q}$.
\textbf{(c)} If $f:A\rightarrow\mathbb{Q}$ and $g:A\rightarrow\mathbb{Q}$ are
two maps, then $f+g$ denotes a new map $A\rightarrow\mathbb{Q}$ that is
defined by%
\[
\left( f+g\right) \left( a\right) =f\left( a\right) +g\left( a\right)
\ \ \ \ \ \ \ \ \ \ \text{for all }a\in A.
\]
\textbf{(d)} We say that a map $f:A\rightarrow\mathbb{Q}$ \textit{satisfies
the conservation constraints} if and only if each $v\in V\setminus\left\{
s,t\right\} $ satisfies $f^{-}\left( v\right) =f^{+}\left( v\right) $.
\end{definition}
Notice that any flow $f:A\rightarrow\mathbb{Q}_{+}$ satisfies the conservation constraints.
\begin{lemma}