-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathuci.py
86 lines (74 loc) · 3.6 KB
/
uci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/12/29 15:01
# @Author : Huatao
# @Email : 735820057@qq.com
# @File : uci.py
# @Description : http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
import os
import numpy as np
import pandas as pd
DATASET_PATH = r'F:\Dataset_Mobility\UCI HAR Dataset Raw\RawData'
def down_sample(data, window_sample, start, end):
result = []
if window_sample.is_integer():
window = int(window_sample)
for i in range(start, end - window, window):
slice = data[i: i + window, :]
result.append(np.mean(slice, 0))
else:
window = int(window_sample)
remainder = 0.0
i = int(start)
while int(start) <= i + window + 1 < int(end):
remainder += window_sample - window
if remainder >= 1:
remainder -= 1
slice = data[i: i + window + 1, :]
# print('i: %d, window: %d, start: %d, end: %d' % (i, window, start, end))
result.append(np.mean(slice, 0))
i += window + 1
else:
slice = data[i: i + window, :]
result.append(np.mean(slice, 0))
# print('i: %d, window: %d, start: %d, end: %d' % (i, window + 1, start, end))
i += window
return np.array(result)
def preprocess(path, path_save, version, raw_sr=50, target_sr=20, seq_len=20):
labels = np.loadtxt(os.path.join(DATASET_PATH, 'labels.txt'), delimiter=' ')
data = []
label = []
window_sample = raw_sr / target_sr
for root, dirs, files in os.walk(path):
for name in files:
if name.startswith('acc'):
tags = name.split('.')[0].split('_')
exp_num = int(tags[1][-2:])
exp_user = int(tags[2][-2:])
label_index = (labels[:, 0] == exp_num) & (labels[:, 1] == exp_user)
label_stat = labels[label_index, :]
for i in range(label_stat.shape[0]):
index_start = label_stat[i, 3]
index_end = label_stat[i, 4]
exp_data_acc = np.loadtxt(os.path.join(root, name), delimiter=' ') * 9.80665
exp_data_gyro = np.loadtxt(os.path.join(root, 'gyro' + name[3:]), delimiter=' ')
exp_data = down_sample(np.concatenate([exp_data_acc, exp_data_gyro], 1), window_sample, index_start, index_end)
if exp_data.shape[0] > seq_len and label_stat[i, 2] <= 6:
exp_data = exp_data[:exp_data.shape[0] // seq_len * seq_len, :]
exp_data = exp_data.reshape(exp_data.shape[0] // seq_len, seq_len, exp_data.shape[1])
exp_label = np.ones((exp_data.shape[0], exp_data.shape[1], 1))
exp_label = np.concatenate([exp_label * label_stat[i, 2], exp_label * label_stat[i, 1]], 2)
data.append(exp_data)
label.append(exp_label)
data = np.concatenate(data, 0)
label = np.concatenate(label, 0)
label[:, :, 0] = label[:, :, 0] - np.min(label[:, :, 0])
label[:, :, 1] = label[:, :, 1] - np.min(label[:, :, 1])
print('All data processed. Size: %d' % (data.shape[0]))
np.save(os.path.join(path_save, 'data_' + version + '.npy'), np.array(data))
np.save(os.path.join(path_save, 'label_' + version + '.npy'), np.array(label))
return data, label
# activity, user
path_save = r'uci'
version = r'20_120'
data, label = preprocess(DATASET_PATH, path_save, version, target_sr=20, seq_len=120)