-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmdDelay.m
226 lines (206 loc) · 7.14 KB
/
mdDelay.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
function delay = mdDelay(data, varargin)
%MDDELAY Estimates time delay for embedding of multivariate times series.
% The function plots the mutual information for multivariate times series
% data, so the user can estimate the optimal value of the time delay for
% embedding the data. The function also returns an estimate of the
% optimal time delay, using simple methods, such as the mean of the lag
% for which the auto mutual information for each of the variables
% (columns) is less than a threshold, such as 1/e.
%
% This function currently implements the uniform multivariate embedding
% method.
%
% Inputs:
% Required arguments:
% data - a matrix with multiple timeseries, one in each column.
%
% Optional arguments:
% maxLag: The maximum time lag for which AMI is computed. Default = 10.
%
% numBins: The number of bins used to construct the histograms for
% computing AMI. Default = 10.
%
% criterion: The citerion used for finding the optimal delay. Possible
% values are:
% 'firstBelow' to use the lowest delay at which the AMI
% function drops below the value set by the threshold parameter.
% 'localMin' to use the position of the first local minimum of the
% AMI function.
% Default: 'firstBelow'
%
% threshold: The threshold value to select the delay when AMI drops
% below threshold. Default = exp(-1)
%
% plottype: Determines how the AMI is plotted. Possible values are
% 'mean', 'all', 'both', 'none'. Default = 'mean'
%
% Outputs:
% delay: The estimated optimal delay given the input and critera.
%
% Version: 1.0, 22 June 2018
% Authors:
% Sebastian Wallot, Max Planck Insitute for Empirical Aesthetics
% Dan Moenster, Aarhus University
%
% Reference:
% Wallot, S., \& M{\o}nster, D. (2018). Calculation of average mutual
% information (AMI) and false-nearest neighbors (FNN) for the
% estimation of embedding parameters of multidimensional time-series in
% Matlab. Front. Psychol. - Quantitative Psychology and Measurement
% (under review)
%
% Parse and validate the input
%
parser = inputParser;
% Optional parameter: plottype
defaultPlotType = 'mean';
validPlotTypes = {'mean', 'all', 'both', 'none'};
checkPlotType = @(x) any(validatestring(x, validPlotTypes));
% Optional parameter: numBins
defaultNumBins = 10;
checkNumBins = @(x) validateattributes(x, {'numeric'}, {'positive', 'numel', 1});
% Optional parameter: maxLag
defaultMaxLag = 10;
checkMaxLag = @(x) validateattributes(x, {'numeric'}, {'positive', 'numel', 1});
% Optional parameter: criterion
defaultCriterion = 'firstBelow';
validCriteria = {'firstBelow', 'localMin'};
checkCriterion = @(x) any(validatestring(x, validCriteria));
% Optional parameter: threshold
defaultThreshold = exp(-1);
checkThreshold = @(x) validateattributes(x, {'numeric'}, {'positive'});
addRequired(parser, 'data', @checkdata);
addOptional(parser, 'plottype', defaultPlotType, checkPlotType);
addOptional(parser, 'numBins', defaultNumBins, checkNumBins);
addOptional(parser, 'maxLag', defaultMaxLag, checkMaxLag);
addOptional(parser, 'criterion', defaultCriterion, checkCriterion);
addOptional(parser, 'threshold', defaultThreshold, checkThreshold);
parse(parser, data, varargin{:});
% Get the optional arguments if provided. Otherwise the specified defaults
% are used.
numBins = parser.Results.numBins;
maxLag = parser.Results.maxLag;
criterion = char(parser.Results.criterion);
threshold = parser.Results.threshold;
plotType = char(parser.Results.plottype);
[~, ncol] = size(data);
%
% Calculation of the mutual information as a function of time lag
%
% Allocate a matrix, where each column will be the auto mutual information
% as a function of time lag [0; maxlag] for a variable in the input data.
auto_mi = zeros(maxLag + 1, ncol);
% Allocate a vector to hold the estimated optimal time lag for each
% dimension.
lags = zeros(1, ncol);
for c=1:ncol
auto_mi(:,c) = autoMI(data(:, c), numBins, maxLag);
if strcmp(criterion, 'firstBelow')
lags(c) = findFirstBelowThreshold(auto_mi(:, c), threshold);
elseif strcmp(criterion, 'localMin')
lags(c) = findFirstLocalMinimum(auto_mi(:, c));
end
end
%
% Call the relevant plotting function
%
switch plotType
case 'mean'
plotMeanMI(auto_mi, threshold);
case 'all'
plotAllMI(auto_mi, threshold);
case 'both'
plotMeanMI(auto_mi, threshold);
plotAllMI(auto_mi, threshold);
case 'none'
end
%
% Return the estimated optimal time lag
%
delay = mean(lags);
end
function check = checkdata(x)
check = false;
if (~isnumeric(x))
error('Input is not numeric');
elseif (numel(x) <= 1)
error('Input must be a vector or matrix');
else
check = true;
end
end
function lag = findFirstBelowThreshold(ami, threshold)
% First find the first element below the threshold. Then test whether
% an element below the threshold was found, and recover if this is not
% the case.
idx = find(ami < threshold, 1, 'first');
if isempty(idx)
disp('No value below threshold found. Will use first local minimum instead');
% If there is more than one elemtent that has the minimum value
% the min() function returns the first one.
lag = findFirstLocalMinimum(ami);
else
% A value of the index idx = 1 corresponds to lag = 0, so 1 is
% subtracted from the index to get the lag.
lag = idx - 1;
end
end
function lag = findFirstLocalMinimum(ami)
% Find all local minima
idx = find(diff(ami) > 0);
if ~isempty(idx)
% Select the first local minimum
idx = idx(1);
else
disp('No local minimium found. Will use global minimum instead');
disp('Consider increasing maxLag');
% If there is more than one elemtent that has the minimum value
% the min() function returns the first one.
[~, idx] = min(ami);
end
% A value of the index idx = 1 corresponds to lag = 0, so 1 is
% subtracted from the index to get the lag.
lag = idx - 1;
end
function plotMeanMI(ami, threshold)
[nlag, ~] = size(ami);
maxlag = nlag - 1;
% Compute a vector with the mean of each row.
y = mean(ami, 2);
% Vector with standard deviation of each row.
stddev = std(ami, 0, 2);
% Construct a vector with lags for x-axis.
x = (0:maxlag)';
figure();
hold off
% Plot shaded area indicating standard deviation if it is non-zero.
if ~max(stddev) == 0
yu = y + stddev;
yl = y - stddev;
% To make this work the vectors need to be transposed to
% become row vectors.
fill([x' fliplr(x')], [yu' fliplr(yl')], [.9 .9 .9], 'linestyle', 'none')
hold on
end
plot(x, y, 'b')
refline(0, threshold)
limits = ylim;
ylim([0, limits(2)]);
xlabel('Time lag')
ylabel('Mutual Information')
end
function plotAllMI(ami, threshold)
[nlag, ncol] = size(ami);
maxlag = nlag - 1;
figure();
hold off
for c = 1:ncol
plot(0:maxlag, ami(:, c), 'b');
hold on
end
refline(0, threshold)
limits = ylim;
ylim([0, limits(2)]);
xlabel('Time lag')
ylabel('Mutual Information')
end