-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvisualization.py
137 lines (101 loc) · 4.49 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from architectures import DENOISERS_ARCHITECTURES, get_architecture, IMAGENET_CLASSIFIERS
from datasets import get_dataset, DATASETS
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
import argparse
import os
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', type=str, choices=DATASETS)
parser.add_argument('--arch', type=str, choices=DENOISERS_ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--batch', default=1, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--gpu', default=None, type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of noise distribution for data augmentation")
parser.add_argument('--classifier', default='', type=str,
help='path to the classifier used with the `classificaiton`'
'or `stability` objectives of the denoiser.')
parser.add_argument('--pretrained-denoiser', default='', type=str,
help='path to a pretrained denoiser')
args = parser.parse_args()
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
toPilImage = ToPILImage()
def main():
## This is used to test the performance of the denoiser attached to a cifar10 classifier
cifar10_test_loader = DataLoader(get_dataset('cifar10', 'test'), shuffle=False, batch_size=args.batch,
num_workers=args.workers)
# Denoiser Loading
if args.pretrained_denoiser:
checkpoint = torch.load(args.pretrained_denoiser)
assert checkpoint['arch'] == args.arch
denoiser = get_architecture(checkpoint['arch'], args.dataset)
denoiser.load_state_dict(checkpoint['state_dict'])
else:
denoiser = get_architecture(args.arch, args.dataset)
denoiser.eval()
# Classifier Loading
if args.classifier in IMAGENET_CLASSIFIERS:
assert args.dataset == 'imagenet'
# loading pretrained imagenet architectures
clf = get_architecture(args.classifier, args.dataset, pytorch_pretrained=True)
else:
checkpoint = torch.load(args.classifier)
clf = get_architecture(checkpoint['arch'], 'cifar10')
clf.load_state_dict(checkpoint['state_dict'])
clf.cuda().eval()
num = visualize(cifar10_test_loader, denoiser, args.noise_sd, clf)
print(num)
print("Finished!")
def tensor_to_PIL(tensor):
unloader = ToPILImage()
image = tensor.cpu().clone()
image = image.squeeze(0)
image = unloader(image)
return image
def visualize(loader: DataLoader, denoiser: torch.nn.Module, noise_sd: float, classifier: torch.nn.Module):
"""
A function to test the classification performance of a denoiser when attached to a given classifier
:param loader:DataLoader: test dataloader
:param denoiser:torch.nn.Module: the denoiser
:param noise_sd:float: the std-dev of the Guassian noise perturbation of the input
:param classifier:torch.nn.Module: the classifier to which the denoiser is attached
"""
# switch to eval mode
classifier.eval()
denoiser.eval()
k = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader):
k = k + 1
inputs = inputs.cuda()
targets = targets.cuda()
noise = torch.randn_like(inputs, device='cuda') * noise_sd
# augment inputs with noise
noisy_inputs = inputs + noise
pre_original = classifier(noisy_inputs).argmax(1).detach().clone()
recon = denoiser(noisy_inputs)
pre_real = classifier(recon).argmax(1).detach().clone()
if pre_original != targets and pre_real == targets and k > 1:
break
inputs = tensor_to_PIL(inputs)
inputs.save("input.jpg")
noise = tensor_to_PIL(noise)
noise.save("noise.jpg")
noisy_inputs = tensor_to_PIL(noisy_inputs)
noisy_inputs.save("noisy_input.jpg")
recon = tensor_to_PIL(recon)
recon.save("recon.jpg")
print("Original Prediction")
print(pre_original)
print("Denoised Prediction")
print(pre_real)
return k
if __name__ == "__main__":
main()