-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clip.py
250 lines (207 loc) · 9.13 KB
/
train_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import pandas
import json
import argparse
import logging
import os
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from transformers import CLIPModel, CLIPProcessor, AutoModel, AutoConfig
from transformers import Trainer, TrainingArguments
from transformers.modeling_outputs import SequenceClassifierOutput
from datasets import load_dataset, load_metric, DownloadConfig, load_from_disk, DatasetDict
import datasets
from sklearn import metrics
datasets.config.MAX_TABLE_NBYTES_FOR_PICKLING = 500 << 20
datasets.config.IN_MEMORY_MAX_SIZE = 30000000000
class ClipClassification(nn.Module):
def __init__(self,checkpoint,num_labels, outdim=512):
super(ClipClassification,self).__init__()
self.num_labels = num_labels
self.outdim = outdim
#Load Model with given checkpoint and extract its body
self.model = AutoModel.from_pretrained(checkpoint,config=AutoConfig.from_pretrained(checkpoint, output_attentions=True,output_hidden_states=True))
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(outdim*2,num_labels) # load and initialize weights
def forward(self, input_ids=None, attention_mask=None, pixel_values=None, labels=None):
#Extract outputs from the body
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values)
#Add custom layers
text_emb = outputs['text_embeds']
image_emb = outputs['image_embeds']
emb = torch.concat([text_emb,image_emb],dim=1)
emb = self.dropout(emb)
logits = self.classifier(emb) # calculate losses
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
hidden = outputs['text_model_output']['last_hidden_state']
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden,attentions=None)
if __name__ == "__main__":
#TODO how does learning on only question-answer pairs vs. also seeing the logic program compare?
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int)
parser.add_argument('--n_samples', type=int)
parser.add_argument('--samples_path', type=str, default='samples/')
parser.add_argument('--data_path', type=str)
parser.add_argument('--model_path', type=str)
parser.add_argument('--save_to_disk', type=str)
parser.add_argument('--train_samples', type=int, default=10000)
parser.add_argument('--val_samples', type=int, default=2000)
parser.add_argument('--test_samples', type=int, default=5000)
parser.add_argument('--name', type=str, default='general')
parser.add_argument('--cachedir', type=str, default=None)
args = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler()
]
)
logging.info("Loading CLIP")
model_path = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(model_path)
model_path = "openai/clip-vit-base-patch32"
logging.info("Loading dataset")
if args.data_path:
dataset = load_from_disk(args.data_path)
else:
dl_config = DownloadConfig(resume_download=True, num_proc=8,
force_download=True)
logging.info('Loading training data')
dataset_train = load_dataset('dali-does/clevr-math',
name=args.name,
download_config=dl_config,
split='train[:{}]'.format(args.train_samples),
cache_dir='/scratch/dali/clevrcache/')
logging.info('Loading validation data')
dataset_val = load_dataset('dali-does/clevr-math',
name=args.name,
download_config=dl_config,
split='validation[:{}]'.format(args.val_samples),
cache_dir='/scratch/dali/clevrcache/')
logging.info('Loading test data')
dataset_test = load_dataset('dali-does/clevr-math',
name=args.name,
download_config=dl_config,
split='test[:{}]'.format(args.test_samples),
cache_dir='/scratch/dali/clevrcache/')
logging.info('Dataset loaded')
dataset = DatasetDict({
'train':dataset_train,
'validation':dataset_val,
'test':dataset_test
})
logging.info('Selecting subsets')
dataset['train'] = dataset['train'].select(range(args.train_samples))
dataset['validation'].select(range(args.val_samples))
dataset['test'].select(range(args.test_samples))
logging.info('Loading CLIP')
#TODO convert CLEVR images offline
extractor = CLIPProcessor.from_pretrained(model_path)
def transform_tokenize(e):
e['image'] = [image.convert('RGB') for image in e['image']]
return extractor(text=e['question'],
images=e['image'],
padding=True)
#cache_file_names = {
# 'train': TODO ,
# 'validation': TODO,
# 'test': TODO,
# }
logging.info('Transforming dataset')
dataset = dataset.map(transform_tokenize,
# cache_file_names=cache_file_names,
# keep_in_memory=True,
batched=True,
num_proc=8,
padding='max_length'
)
if args.save_to_disk:
dataset.save_to_disk(args.save_to_disk)
logging.info('Filtering datasets')
dataset_multihop = dataset.filter(lambda e:
e['template'].startswith('subtraction-multihop'), num_proc=4)
dataset_adversarial = dataset.filter(lambda e:
e['template'].startswith('adversarial'), num_proc=4)
dataset_subtraction = dataset.filter(lambda e:
e['template'].startswith('subtraction'), num_proc=4)
dataset_addition = dataset.filter(lambda e:
e['template'].startswith('addition'), num_proc=4)
metric = load_metric('accuracy')
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits[:-1], axis=-1)[0]
return metric.compute(predictions=predictions, references=labels)
logging.info('Loading model')
model = ClipClassification(model_path, 11)
logging.info("Creating trainer")
training_args = TrainingArguments("test_trainer",
num_train_epochs=args.epochs,
per_device_train_batch_size=32,
fp16=True,
dataloader_num_workers=8,
dataloader_pin_memory=8,
gradient_accumulation_steps=1,
save_strategy='no',
evaluation_strategy='epoch',
eval_steps=1)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset['train'],
eval_dataset=dataset['validation'],
compute_metrics=compute_metrics,
)
logging.info("Training model")
training_metrics = trainer.train()
logging.info(training_metrics)
def get_sample_ids(y_true, y_pred,n=10, matching=True,rand=True):
num_items = len(y_true)
ids = []
counter = 0
while len(ids) < n and counter < 1000:
counter += 1
i = np.random.randint(0, num_items)
is_matching = y_true[i] == y_pred[i]
if matching == is_matching:
ids.append(i)
return ids
for test_data in [dataset, dataset_subtraction, dataset_addition, dataset_adversarial, dataset_multihop]:
predictions, labels, test_metrics = trainer.predict(test_data['test'])
y_true = labels #test_data['test']['label']
y_pred = np.argmax(predictions[:-1], axis=-1)[0]
# sample n_samples correct and 10 wrong answers for closer inspection
n_samples = args.n_samples
correct_samples = get_sample_ids(y_true, y_pred, n=n_samples)
incorrect_samples = get_sample_ids(y_true, y_pred, n=n_samples, matching=False)
logging.info('Incorrect answers')
for i in range(n_samples):
sample_index = incorrect_samples[i]
image_index = sample_index
sample = test_data['test'][sample_index]
if 'id' in sample:
image_index = sample['id']
print('Question {}(image {}) ={}= was incorrectly answered with {} instead of {}'
.format(sample_index, image_index, sample['question'],
y_pred[sample_index], sample['label']))
sample['image'].save('{}/incorrect/{}.png'.format(args.sample_path, image_index))
logging.info('Correct answers')
for i in range(n_samples):
sample_index = correct_samples[i]
image_index = sample_index
sample = test_data['test'][sample_index]
if 'id' in sample:
image_index = sample['id']
print("has id")
print(sample['question'])
print('Question {}(image {}) ={}= was correctly answered with {}'
.format(sample_index, image_index, sample['question'], sample['label']))
sample['image'].save('{}/correct/{}.png'.format(args.sample_path, image_index))
confusion_matrix = metrics.confusion_matrix(y_true, y_pred,
labels=[0,1,2,3,4,5,6,7,8,9,10])
print(confusion_matrix)
logging.info(test_metrics)