-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathcapsuleNet_SEARCH17.py
72 lines (60 loc) · 3.96 KB
/
capsuleNet_SEARCH17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorflow as tf
from capsuleLayer import CapsLayer
import math
epsilon = 1e-9
class CapsE(object):
def __init__(self, sequence_length, embedding_size, num_filters, iter_routing, batch_size=256,
num_outputs_secondCaps=1, vec_len_secondCaps=10, initialization=[], filter_size=1, useConstantInit=False):
# Placeholders for input, output
self.input_x = tf.placeholder(tf.int32, [batch_size, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [batch_size, 1], name="input_y")
self.filter_size = filter_size
self.num_filters = num_filters
self.sequence_length = sequence_length
self.embedding_size = embedding_size
self.iter_routing = iter_routing
self.num_outputs_secondCaps = num_outputs_secondCaps
self.vec_len_secondCaps = vec_len_secondCaps
self.batch_size = batch_size
self.useConstantInit = useConstantInit
# Embedding layer
with tf.name_scope("embedding"):
self.W_query = tf.get_variable(name="W_query", initializer=initialization[0], trainable=False)
self.W_user = tf.get_variable(name="W_user", initializer=initialization[1])
self.W_doc = tf.get_variable(name="W_doc", initializer=initialization[2], trainable=False)
self.embedded_query = tf.nn.embedding_lookup(self.W_query, self.input_x[:, 0])
self.embedded_user = tf.nn.embedding_lookup(self.W_user, self.input_x[:, 1])
self.embedded_doc = tf.nn.embedding_lookup(self.W_doc, self.input_x[:, 2])
self.embedded_query = tf.reshape(self.embedded_query, [batch_size, 1, self.embedding_size])
self.embedded_user = tf.reshape(self.embedded_user, [batch_size, 1, self.embedding_size])
self.embedded_doc = tf.reshape(self.embedded_doc, [batch_size, 1, self.embedding_size])
self.embedded_chars = tf.concat([self.embedded_query, self.embedded_user, self.embedded_doc], axis=1)
self.X = tf.expand_dims(self.embedded_chars, -1)
self.build_arch()
self.loss()
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=500)
tf.logging.info('Seting up the main structure')
def build_arch(self):
#The first capsule layer
with tf.variable_scope('FirstCaps_layer'):
self.firstCaps = CapsLayer(num_outputs_secondCaps=self.num_outputs_secondCaps, vec_len_secondCaps=self.vec_len_secondCaps,
with_routing=False, layer_type='CONV', embedding_size=self.embedding_size,
batch_size=self.batch_size, iter_routing=self.iter_routing,
useConstantInit=self.useConstantInit, filter_size=self.filter_size,
num_filters=self.num_filters, sequence_length=self.sequence_length)
self.caps1 = self.firstCaps(self.X, kernel_size=1, stride=1)
#The second capsule layer
with tf.variable_scope('SecondCaps_layer'):
self.secondCaps = CapsLayer(num_outputs_secondCaps=self.num_outputs_secondCaps, vec_len_secondCaps=self.vec_len_secondCaps,
with_routing=True, layer_type='FC',
batch_size=self.batch_size, iter_routing=self.iter_routing,
embedding_size=self.embedding_size, useConstantInit=self.useConstantInit, filter_size=self.filter_size,
num_filters=self.num_filters, sequence_length=self.sequence_length)
self.caps2 = self.secondCaps(self.caps1)
self.v_length = tf.sqrt(tf.reduce_sum(tf.square(self.caps2), axis=2, keepdims=True) + epsilon)
def loss(self):
self.scores = tf.reshape(self.v_length, [self.batch_size, 1])
self.predictions = tf.nn.sigmoid(self.scores)
print("Using square softplus loss")
losses = tf.square(tf.nn.softplus(self.scores * self.input_y))
self.total_loss = tf.reduce_mean(losses)