-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathbuilddata_softplus.py
243 lines (197 loc) · 8.06 KB
/
builddata_softplus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import scipy
import scipy.io
import random
from batching_softplus import *
def read_from_id(filename='../data/WN18RR/entity2id.txt'):
entity2id = {}
id2entity = {}
with open(filename) as f:
for line in f:
if len(line.strip().split()) > 1:
tmp = line.strip().split()
entity2id[tmp[0]] = int(tmp[1])
id2entity[int(tmp[1])] = tmp[0]
return entity2id, id2entity
def init_norm_Vector(relinit, entinit, embedding_size):
lstent = []
lstrel = []
with open(relinit) as f:
for line in f:
tmp = [float(val) for val in line.strip().split()]
lstrel.append(tmp)
with open(entinit) as f:
for line in f:
tmp = [float(val) for val in line.strip().split()]
lstent.append(tmp)
assert embedding_size % len(lstent[0]) == 0
return np.array(lstent, dtype=np.float32), np.array(lstrel, dtype=np.float32)
def getID(folder='data/WN18RR/'):
lstEnts = {}
lstRels = {}
with open(folder + 'train.txt') as f:
for line in f:
line = line.strip().split()
if line[0] not in lstEnts:
lstEnts[line[0]] = len(lstEnts)
if line[2] not in lstEnts:
lstEnts[line[2]] = len(lstEnts)
if line[1] not in lstRels:
lstRels[line[1]] = len(lstRels)
with open(folder + 'valid.txt') as f:
for line in f:
line = line.strip().split()
if line[0] not in lstEnts:
lstEnts[line[0]] = len(lstEnts)
if line[2] not in lstEnts:
lstEnts[line[2]] = len(lstEnts)
if line[1] not in lstRels:
lstRels[line[1]] = len(lstRels)
with open(folder + 'test.txt') as f:
for line in f:
line = line.strip().split()
if line[0] not in lstEnts:
lstEnts[line[0]] = len(lstEnts)
if line[2] not in lstEnts:
lstEnts[line[2]] = len(lstEnts)
if line[1] not in lstRels:
lstRels[line[1]] = len(lstRels)
wri = open(folder + 'entity2id.txt', 'w')
for entity in lstEnts:
wri.write(entity + '\t' + str(lstEnts[entity]))
wri.write('\n')
wri.close()
wri = open(folder + 'relation2id.txt', 'w')
for entity in lstRels:
wri.write(entity + '\t' + str(lstRels[entity]))
wri.write('\n')
wri.close()
def parse_line(line):
line = line.strip().split()
sub = line[0]
rel = line[1]
obj = line[2]
val = [1]
if len(line) > 3:
if line[3] == '-1':
val = [-1]
return sub, obj, rel, val
def load_triples_from_txt(filename, words_indexes=None, parse_line=parse_line):
"""
Take a list of file names and build the corresponding dictionnary of triples
"""
if words_indexes == None:
words_indexes = dict()
entities = set()
next_ent = 0
else:
entities = set(words_indexes)
next_ent = max(words_indexes.values()) + 1
data = dict()
with open(filename) as f:
lines = f.readlines()
for _, line in enumerate(lines):
sub, obj, rel, val = parse_line(line)
if sub in entities:
sub_ind = words_indexes[sub]
else:
sub_ind = next_ent
next_ent += 1
words_indexes[sub] = sub_ind
entities.add(sub)
if rel in entities:
rel_ind = words_indexes[rel]
else:
rel_ind = next_ent
next_ent += 1
words_indexes[rel] = rel_ind
entities.add(rel)
if obj in entities:
obj_ind = words_indexes[obj]
else:
obj_ind = next_ent
next_ent += 1
words_indexes[obj] = obj_ind
entities.add(obj)
data[(sub_ind, rel_ind, obj_ind)] = val
indexes_words = {}
for tmpkey in words_indexes:
indexes_words[words_indexes[tmpkey]] = tmpkey
return data, words_indexes, indexes_words
def build_data(name='WN18', path='../../CNNGraph/data'):
folder = path + '/' + name + '/'
train_triples, words_indexes, _ = load_triples_from_txt(folder + 'train.txt', parse_line=parse_line)
valid_triples, words_indexes, _ = load_triples_from_txt(folder + 'valid.txt',
words_indexes=words_indexes, parse_line=parse_line)
test_triples, words_indexes, indexes_words = load_triples_from_txt(folder + 'test.txt',
words_indexes=words_indexes,
parse_line=parse_line)
entity2id, id2entity = read_from_id(folder + '/entity2id.txt')
relation2id, id2relation = read_from_id(folder + '/relation2id.txt')
left_entity = {}
right_entity = {}
with open(folder + 'train.txt') as f:
lines = f.readlines()
for _, line in enumerate(lines):
head, tail, rel, val = parse_line(line)
# count the number of occurrences for each (heal, rel)
if relation2id[rel] not in left_entity:
left_entity[relation2id[rel]] = {}
if entity2id[head] not in left_entity[relation2id[rel]]:
left_entity[relation2id[rel]][entity2id[head]] = 0
left_entity[relation2id[rel]][entity2id[head]] += 1
# count the number of occurrences for each (rel, tail)
if relation2id[rel] not in right_entity:
right_entity[relation2id[rel]] = {}
if entity2id[tail] not in right_entity[relation2id[rel]]:
right_entity[relation2id[rel]][entity2id[tail]] = 0
right_entity[relation2id[rel]][entity2id[tail]] += 1
left_avg = {}
for i in range(len(relation2id)):
left_avg[i] = sum(left_entity[i].values()) * 1.0 / len(left_entity[i])
right_avg = {}
for i in range(len(relation2id)):
right_avg[i] = sum(right_entity[i].values()) * 1.0 / len(right_entity[i])
headTailSelector = {}
for i in range(len(relation2id)):
headTailSelector[i] = 1000 * right_avg[i] / (right_avg[i] + left_avg[i])
return train_triples, valid_triples, test_triples, words_indexes, indexes_words, headTailSelector, entity2id, id2entity, relation2id, id2relation
def dic_of_chars(words_indexes):
lstChars = {}
for word in words_indexes:
for char in word:
if char not in lstChars:
lstChars[char] = len(lstChars)
lstChars['unk'] = len(lstChars)
return lstChars
def convert_to_seq_chars(x_batch, lstChars, indexes_words):
lst = []
for [tmpH, tmpR, tmpT] in x_batch:
wH = [lstChars[tmp] for tmp in indexes_words[tmpH]]
wR = [lstChars[tmp] for tmp in indexes_words[tmpR]]
wT = [lstChars[tmp] for tmp in indexes_words[tmpT]]
lst.append([wH, wR, wT])
return lst
def _pad_sequences(sequences, pad_tok, max_length):
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok] * max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length
def pad_sequences(sequences, pad_tok):
sequence_padded, sequence_length = [], []
max_length_word = max([max(map(lambda x: len(x), seq))
for seq in sequences])
for seq in sequences:
# all words are same length now
sp, sl = _pad_sequences(seq, pad_tok, max_length_word)
sequence_padded += [sp]
sequence_length += [sl]
max_length_sentence = max(map(lambda x: len(x), sequences))
sequence_padded, _ = _pad_sequences(sequence_padded, [pad_tok] * max_length_word, max_length_sentence)
sequence_length, _ = _pad_sequences(sequence_length, 0, max_length_sentence)
return np.array(sequence_padded).astype(np.int32), np.array(sequence_length).astype(np.int32)
if __name__ == '__main__':
train, valid, test, words_indexes, indexes_words, \
headTailSelector, entity2id, id2entity, relation2id, id2relation = build_data(name='WN18RR')