-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
128 lines (106 loc) · 4.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from model import resnet
from model import densenet_BC
from model import vgg
import data as dataset
import crl_utils
import metrics
import utils
import train
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
parser = argparse.ArgumentParser(description='Confidence Aware Learning')
parser.add_argument('--epochs', default=300, type=int, help='Total number of epochs to run')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size for training')
parser.add_argument('--data', default='cifar10', type=str, help='Dataset name to use [cifar10, cifar100, svhn]')
parser.add_argument('--model', default='res', type=str, help='Models name to use [res, dense, vgg]')
parser.add_argument('--rank_target', default='softmax', type=str, help='Rank_target name to use [softmax, margin, entropy]')
parser.add_argument('--rank_weight', default=1.0, type=float, help='Rank loss weight')
parser.add_argument('--data_path', default='./data/', type=str, help='Dataset directory')
parser.add_argument('--save_path', default='./test/', type=str, help='Savefiles directory')
parser.add_argument('--gpu', default='0', type=str, help='GPU id to use')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
def main():
# set GPU ID
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
cudnn.benchmark = True
# check save path
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
# make dataloader
train_loader, test_loader, \
test_onehot, test_label = dataset.get_loader(args.data,
args.data_path,
args.batch_size)
# set num_class
if args.data == 'cifar100':
num_class = 100
else:
num_class = 10
# set num_classes
model_dict = {
"num_classes": num_class,
}
# set model
if args.model == 'res':
model = resnet.resnet110(**model_dict).cuda()
elif args.model == 'dense':
model = densenet_BC.DenseNet3(depth=100,
num_classes=num_class,
growth_rate=12,
reduction=0.5,
bottleneck=True,
dropRate=0.0).cuda()
elif args.model == 'vgg':
model = vgg.vgg16(**model_dict).cuda()
# set criterion
cls_criterion = nn.CrossEntropyLoss().cuda()
ranking_criterion = nn.MarginRankingLoss(margin=0.0).cuda()
# set optimizer (default:sgd)
optimizer = optim.SGD(model.parameters(),
lr=0.1,
momentum=0.9,
weight_decay=0.0001,
nesterov=False)
# set scheduler
scheduler = MultiStepLR(optimizer,
milestones=[150,250],
gamma=0.1)
# make logger
train_logger = utils.Logger(os.path.join(save_path, 'train.log'))
result_logger = utils.Logger(os.path.join(save_path, 'result.log'))
# make History Class
correctness_history = crl_utils.History(len(train_loader.dataset))
# start Train
for epoch in range(1, args.epochs + 1):
scheduler.step()
train.train(train_loader,
model,
cls_criterion,
ranking_criterion,
optimizer,
epoch,
correctness_history,
train_logger,
args)
# save model
if epoch == args.epochs:
torch.save(model.state_dict(),
os.path.join(save_path, 'model.pth'))
# finish train
# calc measure
acc, aurc, eaurc, aupr, fpr, ece, nll, brier = metrics.calc_metrics(test_loader,
test_label,
test_onehot,
model,
cls_criterion)
# result write
result_logger.write([acc, aurc*1000, eaurc*1000, aupr*100, fpr*100, ece*100, nll*10, brier*100])
if __name__ == "__main__":
main()