-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
78 lines (59 loc) · 3.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import logging
import time
import tqdm
import numpy as np
from sklearn.metrics import roc_auc_score, precision_recall_curve, auc
def mean_roc_auc_at_k(model, train_user_items, test_user_items, K=10, show_progress=True):
auc_list = []
lenders_count, loans_count = train_user_items.shape
start = time.time()
with tqdm.tqdm(total=lenders_count) as progress:
for lender_index in range(lenders_count):
if test_user_items[lender_index, :].nnz == 0:
continue
lender_row = np.zeros(loans_count)
for loan_index, score in model.recommend(lender_index, train_user_items, N=K):
lender_row[loan_index] = score
test_lender_row = test_user_items[lender_index, :].toarray().flatten()
roc_auc = roc_auc_score(test_lender_row, lender_row)
auc_list.append(roc_auc)
progress.update(1)
logging.debug("generated mean ROC AUC in %0.2fs", time.time() - start)
return np.mean(auc_list)
def mean_prec_auc_at_k(model, train_user_items, test_user_items, K=10, show_progress=True):
auc_list = []
lenders_count, loans_count = train_user_items.shape
start = time.time()
with tqdm.tqdm(total=lenders_count) as progress:
for lender_index in range(lenders_count):
if test_user_items[lender_index, :].nnz == 0:
continue
lender_row = np.zeros(loans_count)
for loan_index, score in model.recommend(lender_index, train_user_items, N=K):
lender_row[loan_index] = score
test_lender_row = test_user_items[lender_index, :].toarray().flatten()
precision, recall, thresholds = precision_recall_curve(test_lender_row, lender_row, pos_label=1)
prec_auc = auc(recall, precision)
auc_list.append(prec_auc)
progress.update(1)
logging.debug("generated mean Precision/Recall curve AUC in %0.2fs", time.time() - start)
return np.mean(auc_list)
def mean_roc_auc_at_k2(model, train_user_items, test_user_items, K=10, show_progress=True):
auc_list = []
lenders_count, loans_count = train_user_items.shape
start = time.time()
with tqdm.tqdm(total=lenders_count) as progress:
for lender_index in range(lenders_count):
if test_user_items[lender_index, :].nnz == 0:
continue
lender_vect = model.user_factors[lender_index]
liked = train_user_items[lender_index].indices
scores = model.item_factors.dot(lender_vect)
scores = np.delete(scores, liked)
test_lender_row = test_user_items[lender_index, :].toarray().flatten()
test_lender_row = np.delete(test_lender_row, liked)
roc_auc = roc_auc_score(test_lender_row, scores)
auc_list.append(roc_auc)
progress.update(1)
logging.debug("generated mean ROC AUC in %0.2fs", time.time() - start)
return np.mean(auc_list)