-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction_preliminary.py
84 lines (73 loc) · 3.28 KB
/
prediction_preliminary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pandas as pd
import numpy as np
import bisect
from tqdm import tqdm
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from supervised.automl import AutoML
train = pd.read_csv('./data/train.csv').drop(columns=['SAMPLE_ID'])
test = pd.read_csv('./data/test.csv').drop(columns=['SAMPLE_ID'])
train['ATA'] = pd.to_datetime(train['ATA'])
test['ATA'] = pd.to_datetime(test['ATA'])
for df in [train, test]:
df['year'] = df['ATA'].dt.year
df['month'] = df['ATA'].dt.month
df['day'] = df['ATA'].dt.day
df['hour'] = df['ATA'].dt.hour
df['minute'] = df['ATA'].dt.minute
df['weekday'] = df['ATA'].dt.weekday
train.drop(columns='ATA', inplace=True)
test.drop(columns='ATA', inplace=True)
categorical_features = ['ARI_CO', 'ARI_PO', 'SHIP_TYPE_CATEGORY', 'ID', 'SHIPMANAGER', 'FLAG']
encoders = {}
for feature in tqdm(categorical_features, desc="Encoding features"):
le = LabelEncoder()
train[feature] = le.fit_transform(train[feature].astype(str))
le_classes_set = set(le.classes_)
test[feature] = test[feature].map(lambda s: '-1' if s not in le_classes_set else s)
le_classes = le.classes_.tolist()
bisect.insort_left(le_classes, '-1')
le.classes_ = np.array(le_classes)
test[feature] = le.transform(test[feature].astype(str))
encoders[feature] = le
train.fillna(train.mean(), inplace=True)
test.fillna(train.mean(), inplace=True)
def get_season(month):
if month in [3, 4, 5]:
return 2
elif month in [6, 7, 8]:
return 3
elif month in [9, 10, 11]:
return 4
else:
return 1
train['WIND_INTENSITY'] = np.sqrt(train['U_WIND']**2 + train['V_WIND']**2)
test['WIND_INTENSITY'] = np.sqrt(test['U_WIND']**2 + test['V_WIND']**2)
train['U_WIND_SQUARE'] = train['U_WIND'] ** 2
test['U_WIND_SQUARE'] = test['U_WIND'] ** 2
train['V_WIND_SQUARE'] = train['V_WIND'] ** 2
test['V_WIND_SQUARE'] = test['V_WIND'] ** 2
train['SEASON'] = train['month'].apply(get_season)
test['SEASON'] = test['month'].apply(get_season)
train['WEEKEND'] = train['weekday'].apply(lambda x: 1 if x >= 5 else 0)
test['WEEKEND'] = test['weekday'].apply(lambda x: 1 if x >= 5 else 0)
train['VOLUME'] = train['BREADTH'] * train['LENGTH'] * train['DEPTH']
test['VOLUME'] = test['BREADTH'] * test['LENGTH'] * test['DEPTH']
train['WIND_DIRECTION'] = np.arctan2(train['V_WIND'], train['U_WIND']) * (180/np.pi)
test['WIND_DIRECTION'] = np.arctan2(test['V_WIND'], test['U_WIND']) * (180/np.pi)
train['WIND_DIRECTION'] = train['WIND_DIRECTION'].apply(lambda x: x+360 if x < 0 else x)
test['WIND_DIRECTION'] = test['WIND_DIRECTION'].apply(lambda x: x+360 if x < 0 else x)
train['WIND_SPEED_DIR'] = train['WIND_INTENSITY'] * train['WIND_DIRECTION']
test['WIND_SPEED_DIR'] = test['WIND_INTENSITY'] * test['WIND_DIRECTION']
X_train = train.drop(columns='CI_HOUR')
Y_train = train['CI_HOUR']
scaler = MinMaxScaler()
train_scaled = scaler.fit_transform(X_train)
test_scaled = scaler.transform(test)
X_train = pd.DataFrame(train_scaled, columns = X_train.columns)
test = pd.DataFrame(test_scaled, columns = test.columns)
loaded_automl = AutoML(results_path="./AutoML_1")
predictions = loaded_automl.predict(test)
submit = pd.read_csv('./data/sample_submission.csv')
submit['CI_HOUR'] = predictions
submit.to_csv('./csv/prediction.csv', index=False)