-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapplications.py
329 lines (294 loc) · 12.9 KB
/
applications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import collections
import glob
import math
import os
import pandas
import copy
from scipy.interpolate import interp1d, LinearNDInterpolator
import logging
LOG = logging.getLogger('application')
LOG.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# log_file = './logs/simulator.log'
# fh = logging.FileHandler(log_file)
# fh.setFormatter(formatter)
# LOG.addHandler(fh)
ch = logging.StreamHandler()
ch.setFormatter(formatter)
LOG.addHandler(ch)
def get(name):
return APPLICATIONS[name]
def memoize(f):
memo = {}
def helper(*x):
if x not in memo:
memo[x] = f(*x)
return memo[x]
return helper
class Application(object):
def __init__(self, trace_dir,
init_batch_size=None, max_batch_size=None,
min_local_bsz=None, max_local_bsz=None,
max_epochs=None, target_metric=None):
self.name = os.path.basename(trace_dir)
validation = {}
for path in glob.glob(os.path.join(trace_dir, "validation-*.csv")):
batch_size = int(path.split("-")[-1].split(".")[0])
validation[batch_size] = pandas.read_csv(path)
self.validation = collections.OrderedDict(sorted(validation.items()))
self.placements = \
pandas.read_csv(os.path.join(trace_dir, "placements.csv"))
self.placements["num_nodes"] = \
self.placements.placement.apply(lambda p: len(str(p)))
self.placements["num_replicas"] = \
self.placements.placement.apply(lambda p: sum(map(int, str(p))))
self.scalability = \
pandas.read_csv(os.path.join(trace_dir, "scalability.csv"))
self.init_batch_size = init_batch_size or min(self.validation)
self.max_batch_size = max_batch_size or max(self.validation)
self.min_local_bsz = min_local_bsz or self.placements.local_bsz.min()
self.max_local_bsz = max_local_bsz or self.placements.local_bsz.max()
assert self.max_batch_size >= self.min_local_bsz
self.max_epochs = max_epochs or min(map(len, self.validation.values()))
self.target_metric = target_metric
self.max_gpu = 8
def _validated_batch_sizes(self, batch_size):
# Find the lower-bound and upper-bound batch sizes (may be the same).
lower_bsz = upper_bsz = None
for bsz in self.validation:
if bsz <= batch_size:
lower_bsz = bsz
if bsz >= batch_size:
upper_bsz = bsz
break
assert lower_bsz is not None and upper_bsz is not None, \
"{} {}".format(batch_size, list(self.validation))
assert lower_bsz <= batch_size <= upper_bsz
return lower_bsz, upper_bsz
def get_configurations(self, lo_util=0.5, hi_util=0.8):
# Assuming a cluster of 16 nodes each with 4 GPUs.
ret = []
base_jct = None
base_batch_size = None
for num_replicas in (1, 2, 4, 6, 8, 12, 16, 24, 32, 48):
# 找到刚好卡到最大bsz的replica 即这里用资源最大分配
if num_replicas * self.min_local_bsz > self.max_batch_size:
break
placement = ()
while sum(placement) < num_replicas:
placement = (*placement, min(num_replicas - sum(placement), 4))
best_jct = None
best_batch_size = None
for batch_size, valid in self.validation.items():
local_bsz = math.ceil(batch_size / sum(placement) - 1e-8)
if local_bsz < self.min_local_bsz:
continue
accum_steps = math.ceil(local_bsz / self.max_local_bsz - 1e-8) - 1
#if sum(placement) == 1 and batch_size > self.init_batch_size:
# accum_steps = max(1, accum_steps)
atomic_bsz = math.ceil(local_bsz / (accum_steps + 1) - 1e-8)
epoch = self.get_completion_epoch(batch_size)
step_time, sync_time = self.get_throughput(placement, atomic_bsz)
step_time += accum_steps * (step_time - sync_time)
jct = valid.iteration[epoch] * step_time
if best_jct is None or jct < best_jct:
best_jct = jct
best_batch_size = batch_size
if num_replicas == 1:
base_jct = best_jct
base_batch_size = best_batch_size
elif best_jct < 12 * 3600 and \
lo_util < base_jct / best_jct / num_replicas < hi_util:
ret.append((num_replicas, best_batch_size, best_jct))
if not ret:
ret.append((1, base_batch_size, base_jct))
return ret
def get_best_batch_size(self, num_replicas):
# Assuming a cluster of 16 nodes each with 4 GPUs.
ret = []
base_jct = None
base_batch_size = None
if num_replicas * self.min_local_bsz > self.max_batch_size:
return None
placement = ()
while sum(placement) < num_replicas:
placement = (*placement, min(num_replicas - sum(placement), 4))
best_jct = None
best_batch_size = None
for batch_size, valid in self.validation.items():
local_bsz = math.ceil(batch_size / sum(placement))
if local_bsz < self.min_local_bsz:
continue
if local_bsz > self.max_local_bsz:
break
epoch = self.get_completion_epoch(batch_size)
step_time, _ = self.get_throughput(placement, local_bsz)
jct = valid.iteration[epoch] * step_time
if best_jct is None or jct < best_jct:
best_jct = jct
best_batch_size = batch_size
return best_batch_size
def get_epoch(self, progress):
return max(df.progress.searchsorted(progress, "right")
for df in self.validation.values())
@memoize
def get_progress(self, epoch):
if epoch == 0:
return 0.0
return min(df.progress[epoch - 1] for df in self.validation.values())
@memoize
def get_completion_epoch(self, batch_size):
if self.target_metric is None:
return self.max_epochs - 1
best_metric = None
for epoch in range(self.max_epochs):
next_metric = self.get_best_metric(batch_size, epoch)
if best_metric is not None:
sign = self.target_metric - best_metric
if sign * (self.target_metric - next_metric) <= 0:
# Opposite signs, crossed target metric.
return epoch
return epoch
@memoize
def get_iteration(self, batch_size, epoch):
# Returns the number of iterations after completing a given epoch.
lower_bsz, upper_bsz = self._validated_batch_sizes(batch_size)
lower_it = self.validation[lower_bsz].iteration[epoch]
upper_it = self.validation[upper_bsz].iteration[epoch]
if lower_bsz == upper_bsz:
assert lower_it == upper_it
return lower_it
# Linear interpolation between lower_bsz and upper_bsz.
return ((batch_size - lower_bsz) * upper_it +
(upper_bsz - batch_size) * lower_it) / (upper_bsz - lower_bsz)
@memoize
def get_best_metric(self, batch_size, epoch):
# Returns the best observed validation metric before a given epoch.
if epoch == 0:
return None
lower_bsz, upper_bsz = self._validated_batch_sizes(batch_size)
if (next(iter(self.validation.values())).metric.values[0] <
next(iter(self.validation.values())).metric.values[-1]):
# Validation metric increases.
lower_val = self.validation[lower_bsz].metric[:epoch].max()
upper_val = self.validation[upper_bsz].metric[:epoch].max()
else:
lower_val = self.validation[lower_bsz].metric[:epoch].min()
upper_val = self.validation[upper_bsz].metric[:epoch].min()
if lower_bsz == upper_bsz:
assert lower_val == upper_val
return lower_val
# Linear interpolation between lower_bsz and upper_bsz.
return ((batch_size - lower_bsz) * upper_val +
(upper_bsz - batch_size) * lower_val) / (upper_bsz - lower_bsz)
@memoize
def get_grad_stats(self, batch_size, epoch):
# Returns the gradient sqr and var estimates during a given epoch.
lower_bsz, upper_bsz = self._validated_batch_sizes(batch_size)
lower_sqr = self.validation[lower_bsz].grad_sqr[epoch]
upper_sqr = self.validation[upper_bsz].grad_sqr[epoch]
lower_var = self.validation[lower_bsz].grad_var[epoch]
upper_var = self.validation[upper_bsz].grad_var[epoch]
if lower_bsz == upper_bsz:
assert lower_sqr == upper_sqr and lower_var == upper_var
return lower_sqr, lower_var
# Linear interpolation between lower_bsz and upper_bsz.
sqr = ((batch_size - lower_bsz) * upper_sqr +
(upper_bsz - batch_size) * lower_sqr) / (upper_bsz - lower_bsz)
var = ((batch_size - lower_bsz) * upper_var +
(upper_bsz - batch_size) * lower_var) / (upper_bsz - lower_bsz)
return sqr, var
@memoize
def get_throughput(self, placement, local_bsz):
# Normalize placement to the lexicographically smallest rotation.
placement = tuple(filter(None, placement))
placement = min(placement[i:] + placement[:i]
for i in range(len(placement)))
placement_id = int("".join(map(str, placement)))
xs = ["num_nodes", "num_replicas", "local_bsz"]
ys = ["step_time", "sync_time"]
if placement_id in self.placements.placement.values:
# Found in placement traces, interpolate between local_bsz.
df = self.placements[self.placements.placement == placement_id]
interpolator = interp1d(df.local_bsz.values, df[ys].values, axis=0)
ret = interpolator(local_bsz)
else:
# Interpolate between num_nodes, num_replicas, and local_bsz.
df = self.placements.groupby(xs)[xs + ys].mean()
df = df.append(self.scalability, ignore_index=True)
num_nodes, num_replicas = len(placement), sum(placement)
num_nodes = min(num_nodes, 16)
interpolator = LinearNDInterpolator(df[xs].values, df[ys].values)
ret = interpolator([num_nodes, num_replicas, local_bsz])[0]
# LOG.info("ret: %s",ret)
# LOG.info("info %s","{} {} {}".format(self.name, placement, local_bsz))
assert sum(ret) == sum(ret), "{} {} {}".format(self.name, placement, local_bsz)
return ret
# 这里不调整epoch 但是在真实集群里这里必须要改
TRACES_DIR = os.path.join(os.path.dirname(__file__), "traces")
APPLICATIONS = {
"bert": Application(os.path.join(TRACES_DIR, "bert"), max_epochs=2),
"cifar10": Application(os.path.join(TRACES_DIR, "cifar10"), max_epochs=100),
"ncf": Application(os.path.join(TRACES_DIR, "ncf"), max_epochs=10),
"imagenet": Application(os.path.join(TRACES_DIR, "imagenet"), max_epochs=90),
"deepspeech2": Application(os.path.join(TRACES_DIR, "deepspeech2"), max_epochs=80),
"yolov3": Application(os.path.join(TRACES_DIR, "yolov3"), max_epochs=50, max_local_bsz=8),
}
APPLICATION_keys = list(APPLICATIONS.keys())
for key in APPLICATION_keys:
app = Application(os.path.join(TRACES_DIR,'infer'),max_epochs=1,max_local_bsz=1)
app.name = "infer-{}".format(key)
APPLICATIONS["infer-{}".format(key)] = app
APPLICATIONS_DELAY_BACKUP = { # 把启动时延都统一到60s
'bert': 60,
'cifar10': 60,
'ncf': 60,
'deepspeech2': 60,
'yolov3': 60,
'imagenet': 60,
'infer-cifar10': 6,
'infer-imagenet': 6,
'infer-yolov3': 6, #
'infer-bert': 8, # 权重加载14s,容器创建2s 平均创建时间为16s
'infer-deepspeech2': 4,
'infer-ncf': 4
}
APPLICATIONS_DELAY = {
'bert': 103,
'cifar10': 24,
'ncf': 25,
'deepspeech2': 18,
'yolov3': 26,
'imagenet': 35,
'infer-cifar10': 6,
'infer-imagenet': 6,
'infer-yolov3': 6, #
'infer-bert': 8, # 权重加载14s,容器创建2s 平均创建时间为16s
'infer-deepspeech2': 4,
'infer-ncf': 4
}
# 等待容器销毁时间这个还要另外计算
# for key in APPLICATION_keys:
# APPLICATIONS_DELAY["infer-{}".format(key)] = 0
# APPLICATIONS.update(APP)
# if AFE:
# 初次的delay是要算容器启动时间的
FIRST_DELAY = copy.deepcopy(APPLICATIONS_DELAY)
# 这一段去掉容器启动和销毁以及warmup的时间
NEXT_DELAY = {
'bert': 5,
'cifar10': 3,
'ncf': 2,
'deepspeech2': 1,
'yolov3': 3,
'imagenet': 3,
# Inference Service
'infer-cifar10': 6,
'infer-imagenet': 6,
'infer-yolov3': 6,
'infer-bert': 8,
'infer-deepspeech2': 4,
'infer-ncf': 4
}
# else:
# FIRST_DELAY = APPLICATIONS_DELAY