-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_cifar.py
190 lines (164 loc) · 5.61 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import shutil
import copy
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import save_util
import train_util
import update_loss_util
import models
import pickle
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
reg_types = ["none", "act_noise", "dropout"]
lr_scheds = ["default", "fixed", "decay_once","decay_early"]
act_noise_decay = ["none", "step", "cont", "step_early"]
parser = argparse.ArgumentParser(description='Mitigation strategies for a small learning rate.')
parser.add_argument('--epochs', default=200, type=int,
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', default=128, type=int,
help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', '--wd', default=5e-4, type=float,
help='weight decay (default: 5e-4)')
parser.add_argument('--print_freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--reg_type', choices=reg_types, default='none',
help=' | '.join(reg_types))
parser.add_argument('--dropout', type=float, default=0.4, help='amount of dropout to have.')
parser.add_argument('--dataset', choices=["cifar10", "cifar100"], default="cifar10",
help='cifar10 or cifar100')
parser.add_argument('--lr_sched', choices=lr_scheds, default='default',
help=' | '.join(lr_scheds))
parser.add_argument('--arch', choices=model_names, default="wideresnet16",
help='model architecture:' + ' | '.join(model_names))
parser.add_argument('--act_noise_decay', choices=act_noise_decay, default='none',
help='Type of decay on activation noise.')
parser.add_argument('--act_noise_decay_rate', type=float, default=0.995, help='Decay rate of activaiton noise.')
parser.add_argument('--act_noise', type=float, default=1e-2, help='Level of activation noise to add.')
parser.add_argument('--no_augment', action='store_true',
help='whether to have data augmentation')
parser.add_argument('--save_dir', type=str, help='location to save all the experimental runs.')
parser.add_argument('--data_dir', type=str, help='where the CIFAR data is located.')
parser.set_defaults(no_augment=False)
def main():
args = parser.parse_args()
for arg in vars(args):
print(arg, " : ", getattr(args, arg))
timestamp = datetime.utcnow().strftime("%H_%M_%S_%f-%d_%m_%y")
save_str = "arch_%s_reg_%s_%s" % (
args.arch,
args.reg_type,
timestamp)
save_dir = os.path.join(args.save_dir, save_str)
augment = not args.no_augment
train_loader, val_loader = train_util.load_data(
args.dataset,
args.batch_size,
dataset_path=args.data_dir,
augment=augment)
print("=> creating model '{}'".format(args.arch))
model_args = {
"num_classes": 10 if args.dataset == "cifar10" else 100
}
if args.reg_type == 'dropout':
print("Using dropout.")
model_args['dropRate'] = args.dropout
model = models.__dict__[args.arch](**model_args)
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
model = model.cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_val = checkpoint['best_val']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
optim_hparams = {
'base_lr' : args.lr,
'momentum' : args.momentum,
'weight_decay' : args.weight_decay
}
lr_hparams = {'lr_sched' : args.lr_sched}
optimizer = train_util.create_optimizer(
model,
optim_hparams)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_util.write_args(args, save_dir)
scalar_summary_file = os.path.join(save_dir, "scalars.txt")
scalar_dict = {}
best_val = 0
all_dict = {}
for epoch in range(args.start_epoch, args.epochs):
lr = train_util.adjust_lr(
optimizer,
epoch + 1,
args.lr,
lr_hparams)
train_hparams = {
"reg_type" : args.reg_type,
"noise_level" : train_util.adjust_act_noise(
args.act_noise_decay,
args.act_noise_decay_rate,
args.act_noise,
epoch + 1)
}
train_acc, train_loss = train_util.train_loop(
train_loader,
model,
criterion,
optimizer,
epoch,
train_hparams,
print_freq=args.print_freq)
print("Validating accuracy.")
val_acc, val_loss = train_util.validate(
val_loader,
model,
criterion,
epoch,
print_freq=args.print_freq)
scalar_epoch = {
"lr": lr,
"train_loss": train_loss,
"train_acc": train_acc,
"val_loss": val_loss,
"val_acc": val_acc
}
scalar_dict[epoch + 1] = scalar_epoch
save_util.log_scalar_file(
scalar_epoch,
epoch + 1,
scalar_summary_file)
is_best = val_acc > best_val
best_val = max(val_acc, best_val)
save_util.save_checkpoint(
{
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_val': best_val,
},
scalar_dict,
is_best,
save_dir)
print('Best accuracy: ', best_val)
main()