-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
217 lines (199 loc) · 8.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# ------------------------------------------------------------------------
# Training code for bilinear similarity network (BMNet and BMNet+)
# --cfg: path for configuration file
# ------------------------------------------------------------------------
import argparse
import datetime
import random
import time
import json
import copy
from pathlib import Path
import pdb
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
from torchvision.utils import save_image
from config import cfg
import util.misc as utils
from loss import get_loss
from FSC147_dataset import build_dataset, batch_collate_fn, random_aug_boxes, get_image_classes
from engine import evaluate, train_one_epoch, visualization
from models import build_model
from torch.distributions import uniform, normal
from models.regressor import get_regressor
import torch.nn.functional as F
from PIL import Image
import matplotlib.pyplot as plt
from models.vae import FeatsVAE
import pickle5 as pickle
def select_feats_vae_imgnet(vae_feature, patches, model):
patch_feature = model.backbone(patches)
tmp_patch = model.EPF_extractor.avgpool(patch_feature).flatten(1)
dist = (tmp_patch - vae_feature)**2
dist = dist.sum(1)
return dist.argsort()[:10]
def select_feats_vae(vae_feature, patches, model):
patch_feature = model.backbone(patches)
tmp_patch = model.EPF_extractor.avgpool(patch_feature).flatten(1)
dist = (tmp_patch - vae_feature)**2
dist = dist.sum(1)
return dist.argsort()[:100]
def prepare_data(img_path, anno):
img = Image.open(img_path)
w, h = img.size
gtcount = len(anno['points'])
boxes = np.array(anno['box_examples_coordinates'])
boxes = random_aug_boxes(boxes, img.size[1], img.size[0])
query_transform = transforms.Compose([
transforms.Resize((128,128)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
patches = []
scale_embedding = []
scale_number = 20
for box in boxes:
x1, y1 = box[0].astype(np.int32)
x2, y2 = box[2].astype(np.int32)
#x1,y1,x2,y2 = np.array(box).astype(np.int32)
patch = img.crop((x1, y1, x2, y2))
patches.append(query_transform(patch))
scale = (x2 - x1) / w * 0.5 + (y2 -y1) / h * 0.5
scale = scale // (0.5 / scale_number)
scale = scale if scale < scale_number - 1 else scale_number - 1
scale_embedding.append(0)
patches = torch.stack(patches, dim=0)
main_transform = transforms.Compose([transforms.Resize(size=384), \
transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
img = main_transform(img)
return img.unsqueeze(0), patches.unsqueeze(0), torch.tensor(scale_embedding).unsqueeze(0).to(torch.int64), gtcount, boxes
def get_vae_embedding(attr_np):
feats_vae = FeatsVAE(1024, 512).cuda()
feats_vae.load_state_dict(torch.load('feats_vae.pth'))
z_dist = normal.Normal(0, 1)
ind_count = 500
attr = torch.from_numpy(attr_np.astype(np.float32)).cuda()
attr = attr.repeat(ind_count, 1)
Z = z_dist.sample((ind_count, 512)).cuda()
concat_feats = torch.cat((Z, attr), dim=1)
feats = feats_vae.model(concat_feats)
feats = feats_vae.relu(feats_vae.bn1(feats))
return feats.cpu().mean(0)
def extract_corr_map(args):
#print(args)
device = torch.device(cfg.TRAIN.device)
# fix the seed for reproducibility
seed = cfg.TRAIN.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model = build_model(cfg)
model.to(device)
model.eval()
regressor = get_regressor(cfg)
regressor.to(device)
regressor.eval()
regressor.load_state_dict(torch.load('regressor_model/regressor.pth'))
# define dataset
output_dir = Path(cfg.DIR.output_dir)
cls_dict = get_image_classes('./FSC147_384_V2/ImageClasses_FSC147.txt')
cls_list = np.array(list(cls_dict.values()))
cls_list = sorted(np.unique(cls_list))
vae_feats = np.load(os.path.join(output_dir, 'fsc_vae_feats_best.npy'), allow_pickle=True)
checkpoint = torch.load(cfg.VAL.resume, map_location='cpu')
model_imgnet = copy.deepcopy(model)
model.load_state_dict(checkpoint['model'])
mae = 0
mse = 0
nae = 0
sre = 0
count_idx = 0
loss_avg = 0
errs_all = []
#with open('FSC_multiclass_val_test_All_Boxes.pkl', 'rb') as pickle_file:
# annos = pickle.load(pickle_file)
with open('FSC147_384_V2/annotation_FSC147_384.json', 'rb') as pickle_file:
annos = json.load(pickle_file)
count_item = 0
tmp_list = []
train_list = [name.split('\t') for name in open('FSC147_384_V2/test.txt').read().splitlines()]
for idxx, k in enumerate(train_list):
img, patches1, scale_embedding, gtcount, boxes = prepare_data('./FSC147_384_V2/images_384_VarV2/%s'%k[0], annos[k[0]])
img = img.to(device)
scale_embedding = scale_embedding.to(device)
patches = patches1.to(device)
with torch.no_grad():
###################
ori_features1 = model.backbone(img)
ori_features = model.input_proj(ori_features1)
###################
###################
img = F.interpolate(img, [384,384])
features = model.backbone(img)
features = model.input_proj(features)
patches = patches.flatten(0, 1)
cls = cls_dict[k[0]]
label = cls_list.index(cls)
patch_feature = model.backbone(patches) # obtain feature maps for exemplar patches
vae_feature = vae_feats[label]
#vae_sel_idx = select_feats_vae_imgnet((vae_feature.mean(0)).to(device), patches, model_imgnet)
vae_sel_idx = select_feats_vae_imgnet(torch.from_numpy(vae_feature).to(device), patches, model_imgnet)
patch_feature2 = model.EPF_extractor(patch_feature[vae_sel_idx], scale_embedding[:, vae_sel_idx])
bs, batch_num_patches = scale_embedding.shape
refined_feature, patch_feature2 = model.refiner(ori_features, patch_feature2)
counting_feature, corr_map = model.matcher(refined_feature, patch_feature2)
bs, c, h, w = refined_feature.shape
feats_all = []
if True:
for m_idx in range(patch_feature2.shape[0]):
counting_feature, corr_map = model.matcher(features, patch_feature2[[m_idx]])
feats_all.append(counting_feature)
counting_feature = torch.stack(feats_all).squeeze(1)
scores = regressor(counting_feature)
sel_idx = scores.argsort(0)[:3]
patch_feature3 = patch_feature2[sel_idx[:,0]]
counting_feature, corr_map = model.matcher(refined_feature, patch_feature3)
density_map = model.counter(counting_feature)
error = torch.abs(density_map.sum() - gtcount).item()
errs_all.append(error)
print('%s: gt: %d, err: %d'%(k[0], int(gtcount), int(error)))
count_item += 1
mae += error
mse += error ** 2
nae += error / gtcount
sre += error ** 2 / gtcount
mae = mae / count_item
mse = mse / count_item
nae = nae / count_item
sre = sre / count_item
mse = mse ** 0.5
sre = sre ** 0.5
print('MAE %.2f, MSE %.2f, NAE %.2f, SRE %.2f \n'%(mae, mse, nae, sre))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Class Agnostic Object Counting in PyTorch"
)
parser.add_argument(
"--cfg",
default="config/bmnet+_fsc147.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
args = parser.parse_args()
cfg.merge_from_file(args.cfg)
#cfg.merge_from_list(args.opts)
cfg.DIR.output_dir = os.path.join(cfg.DIR.snapshot, cfg.DIR.exp)
if not os.path.exists(cfg.DIR.output_dir):
os.mkdir(cfg.DIR.output_dir)
cfg.TRAIN.resume = os.path.join(cfg.DIR.output_dir, cfg.TRAIN.resume)
cfg.VAL.resume = os.path.join(cfg.DIR.output_dir, cfg.VAL.resume)
with open(os.path.join(cfg.DIR.output_dir, 'config.yaml'), 'w') as f:
f.write("{}".format(cfg))
extract_corr_map(cfg)