-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_ltr.py
583 lines (479 loc) · 24 KB
/
exp_ltr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import numpy as np
import pandas as pd
import random
import sys
from sklearn import model_selection
import tensorflow as tf
import pickle
from utils import *
from sklearn.metrics import roc_auc_score
import argparse
import tensorflow_constrained_optimization as tfco
def pair_pos_neg_docs(data):
# Returns a DataFrame of pairs of positive-negative docs from given DataFrame.
# Separate pos and neg docs.
pos_docs = data[data.label == 1]
if pos_docs.empty:
return
neg_docs = data[data.label == 0]
if neg_docs.empty:
return
# Include a merge key.
pos_docs.insert(0, 'merge_key', 0)
neg_docs.insert(0, 'merge_key', 0)
# Merge docs and drop merge key column.
pairs = pos_docs.merge(neg_docs, on='merge_key', how='outer',
suffixes=('_pos', '_neg'))
pairs.drop(columns=['merge_key'], inplace=True)
return pairs
def convert_labeled_to_paired_data(data_dict, index=None):
# Forms pairs of examples from each batch/query.
# Converts data arrays to pandas DataFrame with required column names and
# makes a call to convert_df_to_pairs and returns a dictionary.
features = data_dict['features']
labels = data_dict['labels']
groups = data_dict['groups']
queries = data_dict['queries']
if index is not None:
data_df = pd.DataFrame(features[queries == index, :])
data_df = data_df.assign(label=pd.DataFrame(labels[queries == index]))
data_df = data_df.assign(group=pd.DataFrame(groups[queries == index]))
data_df = data_df.assign(query_id=pd.DataFrame(queries[queries == index]))
else:
data_df = pd.DataFrame(features)
data_df = data_df.assign(label=pd.DataFrame(labels))
data_df = data_df.assign(group=pd.DataFrame(groups))
data_df = data_df.assign(query_id=pd.DataFrame(queries))
# Forms pairs of positive-negative docs for each query in given DataFrame
# if the DataFrame has a query_id column. Otherise forms pairs from all rows
# of the DataFrame.
data_pairs = data_df.groupby('query_id').apply(pair_pos_neg_docs)
# Create groups ndarray.
pos_groups = data_pairs['group_pos'].values.reshape(-1, 1)
neg_groups = data_pairs['group_neg'].values.reshape(-1, 1)
group_pairs = np.concatenate((pos_groups, neg_groups), axis=1)
# Create queries ndarray.
queries = data_pairs['query_id_pos'].values.reshape(-1,)
# Create features ndarray.
feature_names = data_df.columns
feature_names = feature_names.drop(['query_id', 'label'])
feature_names = feature_names.drop(['group'])
pos_features = data_pairs[[str(s) + '_pos' for s in feature_names]].values
pos_features = pos_features.reshape(-1, 1, len(feature_names))
neg_features = data_pairs[[str(s) + '_neg' for s in feature_names]].values
neg_features = neg_features.reshape(-1, 1, len(feature_names))
features_pairs = np.concatenate((pos_features, neg_features), axis=1)
# Paired data dict.
paired_data = {
'features': features_pairs,
'groups': group_pairs,
'queries': queries,
'dimension': data_dict['dimension'],
'num_queries': data_dict['num_queries']
}
return paired_data
def get_mask(groups, pos_group, neg_group=None):
# Returns a boolean mask selecting positive-negative document pairs where
# the protected group for the positive document is pos_group and
# the protected group for the negative document (if specified) is neg_group.
# Repeat group membership positive docs as many times as negative docs.
mask_pos = groups[:, 0] == pos_group
if neg_group is None:
return mask_pos
else:
mask_neg = groups[:, 1] == neg_group
return mask_pos & mask_neg
def error_rate(model, dataset):
# Returns error rate for Keras model on dataset.
d = dataset['dimension']
scores0 = model.predict(dataset['features'][:, 0, 0:d].reshape(-1, d))
scores1 = model.predict(dataset['features'][:, 1, 0:d].reshape(-1, d))
diff = scores0 - scores1
return np.mean(diff.reshape((-1)) < 0)
def group_error_rate(model, dataset, pos_group, neg_group=None):
# Returns error rate for Keras model on data set, considering only document
# pairs where the protected group for the positive document is pos_group, and
# the protected group for the negative document (if specified) is neg_group.
d = dataset['dimension']
scores0 = model.predict(dataset['features'][:, 0, :].reshape(-1, d))
scores1 = model.predict(dataset['features'][:, 1, :].reshape(-1, d))
mask = get_mask(dataset['groups'], pos_group, neg_group)
diff = scores0 - scores1
diff = diff[mask > 0].reshape((-1))
return np.mean(diff < 0)
def create_ranking_model(features, dimension):
# Returns a linear Keras ranking model, and returns a nullary function
# returning predictions on the features.
# Linear ranking model with no hidden layers.
# No bias included as this is a ranking problem.
layers = []
# Input layer takes `dimension` inputs.
layers.append(tf.keras.Input(shape=(dimension,)))
layers.append(tf.keras.layers.Dense(1, use_bias=False))
ranking_model = tf.keras.Sequential(layers)
# Create a nullary function that returns applies the linear model to the
# features and returns the tensor with the predictions.
def predictions():
scores0 = ranking_model(features()[:, 0, :].reshape(-1, dimension))
scores1 = ranking_model(features()[:, 1, :].reshape(-1, dimension))
return tf.reshape(scores0 - scores1, (-1,))
return ranking_model, predictions
def group_mask_fn(groups, pos_group, neg_group=None):
# Returns a nullary function returning group mask.
group_mask = lambda: np.reshape(
get_mask(groups(), pos_group, neg_group), (-1))
return group_mask
def formulate_problem(
features, groups, dimension, constraint_groups=[], constraint_slack=None):
# Formulates a constrained problem that optimizes the error rate for a linear
# model on the specified dataset, subject to pairwise fairness constraints
# specified by the constraint_groups and the constraint_slack.
#
# Args:
# features: Nullary function returning features
# groups: Nullary function returning groups
# labels: Nullary function returning labels
# dimension: Input dimension for ranking model
# constraint_groups: List containing tuples of the form
# ((pos_group0, neg_group0), (pos_group1, neg_group1)), specifying the
# group memberships for the document pairs to compare in the constraints.
# constraint_slack: slackness '\epsilon' allowed in the constraints.
# Returns:
# A RateMinimizationProblem object, and a Keras ranking model.
# Set random seed for reproducibility.
random.seed(333333)
np.random.seed(121212)
tf.random.set_seed(212121)
# Create linear ranking model: we get back a Keras model and a nullary
# function returning predictions on the features.
ranking_model, predictions = create_ranking_model(features, dimension)
# Context for the optimization objective.
context = tfco.rate_context(predictions)
# Constraint set.
constraint_set = []
# Context for the constraints.
for ((pos_group0, neg_group0), (pos_group1, neg_group1)) in constraint_groups:
# Context for group 0.
group_mask0 = group_mask_fn(groups, pos_group0, neg_group0)
context_group0 = context.subset(group_mask0)
# Context for group 1.
group_mask1 = group_mask_fn(groups, pos_group1, neg_group1)
context_group1 = context.subset(group_mask1)
# Add constraints to constraint set.
constraint_set.append(
tfco.negative_prediction_rate(context_group0) <= (
tfco.negative_prediction_rate(context_group1) + constraint_slack))
constraint_set.append(
tfco.negative_prediction_rate(context_group1) <= (
tfco.negative_prediction_rate(context_group0) + constraint_slack))
# Formulate constrained minimization problem.
problem = tfco.RateMinimizationProblem(
tfco.negative_prediction_rate(context), constraint_set)
return problem, ranking_model
def train_model(train_set, params):
# Trains the model with stochastic updates (one query per updates).
#
# Args:
# train_set: Dictionary of "paired" training data.
# params: Dictionary of hyper-paramters for training.
#
# Returns:
# Trained model, list of objectives, list of group constraint violations.
# Set up problem and model.
if params['constrained']:
# Constrained optimization.
if params['constraint_type'] == 'marginal_equal_opportunity':
constraint_groups = [((0, None), (1, None))]
elif params['constraint_type'] == 'cross_group_equal_opportunity':
constraint_groups = [((0, 1), (1, 0))]
else:
constraint_groups = [((0, 1), (1, 0)), ((0, 0), (1, 1))]
else:
# Unconstrained optimization.
constraint_groups = []
# Dictionary that will hold batch features pairs, group pairs and labels for
# current batch. We include one query per-batch.
paired_batch = {}
batch_index = 0 # Index of current query.
# Data functions.
features = lambda: paired_batch['features']
groups = lambda: paired_batch['groups']
# Create ranking model and constrained optimization problem.
problem, ranking_model = formulate_problem(
features, groups, train_set['dimension'], constraint_groups,
params['constraint_slack'])
# Create a loss function for the problem.
lagrangian_loss, update_ops, multipliers_variables = (
tfco.create_lagrangian_loss(problem, dual_scale=params['dual_scale']))
# Create optimizer
optimizer = tf.keras.optimizers.Adagrad(learning_rate=params['learning_rate'])
# List of trainable variables.
var_list = (
ranking_model.trainable_weights + problem.trainable_variables +
[multipliers_variables])
# List of objectives, group constraint violations.
# violations, and snapshot of models during course of training.
objectives = []
group_violations = []
models = []
features = train_set['features']
queries = train_set['queries']
groups = train_set['groups']
print()
# Run loops * iterations_per_loop full batch iterations.
for ii in range(params['loops']):
for jj in range(params['iterations_per_loop']):
# Populate paired_batch dict with all pairs for current query. The batch
# index is the same as the current query index.
paired_batch = {
'features': features[queries == batch_index],
'groups': groups[queries == batch_index]
}
# Optimize loss.
update_ops()
optimizer.minimize(lagrangian_loss, var_list=var_list)
# Update batch_index, and cycle back once last query is reached.
batch_index = (batch_index + 1) % train_set['num_queries']
# print(ii,jj)
# Snap shot current model.
model_copy = tf.keras.models.clone_model(ranking_model)
model_copy.set_weights(ranking_model.get_weights())
models.append(model_copy)
# Evaluate metrics for snapshotted model.
error, gerr, group_viol = evaluate_results(
ranking_model, train_set, params)
objectives.append(error)
group_violations.append(
[x - params['constraint_slack'] for x in group_viol])
sys.stdout.write(
'\r Loop %d: error = %.3f, max constraint violation = %.3f' %
(ii, objectives[-1], max(group_violations[-1])))
print()
if params['constrained']:
# Find model iterate that trades-off between objective and group violations.
best_index = tfco.find_best_candidate_index(
np.array(objectives), np.array(group_violations), rank_objectives=False)
else:
# Find model iterate that achieves lowest objective.
best_index = np.argmin(objectives)
return models[best_index]
def evaluate_results(model, test_set, params):
# Returns overall, group error rates, group-level constraint violations.
if params['constraint_type'] == 'marginal_equal_opportunity':
g0_error = group_error_rate(model, test_set, 0)
g1_error = group_error_rate(model, test_set, 1)
group_violations = [g0_error - g1_error, g1_error - g0_error]
return (error_rate(model, test_set), [g0_error, g1_error],
group_violations)
else:
g00_error = group_error_rate(model, test_set, 0, 0)
g01_error = group_error_rate(model, test_set, 0, 1)
g10_error = group_error_rate(model, test_set, 1, 1)
g11_error = group_error_rate(model, test_set, 1, 1)
group_violations_offdiag = [g01_error - g10_error, g10_error - g01_error]
group_violations_diag = [g00_error - g11_error, g11_error - g00_error]
if params['constraint_type'] == 'cross_group_equal_opportunity':
return (error_rate(model, test_set),
[[g00_error, g01_error], [g10_error, g11_error]],
group_violations_offdiag)
else:
return (error_rate(model, test_set),
[[g00_error, g01_error], [g10_error, g11_error]],
group_violations_offdiag + group_violations_diag)
def display_results(
model, test_set, params, method, error_type, show_header=False):
# Prints evaluation results for model on test data.
error, group_error, diffs = evaluate_results(model, test_set, params)
if params['constraint_type'] == 'marginal_equal_opportunity':
if show_header:
print('\nMethod\t\t\tError\t\tOverall\t\tGroup 0\t\tGroup 1\t\tDiff')
print('%s\t%s\t\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f' % (
method, error_type, error, group_error[0], group_error[1],
np.max(diffs)))
elif params['constraint_type'] == 'cross_group_equal_opportunity':
if show_header:
print('\nMethod\t\t\tError\t\tOverall\t\tGroup 0/1\tGroup 1/0\tDiff')
print('%s\t%s\t\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f' % (
method, error_type, error, group_error[0][1], group_error[1][0],
np.max(diffs)))
else:
if show_header:
print('\nMethod\t\t\tError\t\tOverall\t\tGroup 0/1\tGroup 1/0\t' +
'Group 0/0\tGroup 1/1\tDiff')
print('%s\t%s\t\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f' % (
method, error_type, error, group_error[0][1], group_error[1][0],
group_error[0][0], group_error[1][1], np.max(diffs)))
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# We will divide the data into 10 batches, and treat each of them as a query.
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type = str, default="german", help="dataset to run(compas, framingham, adult, german)")
parser.add_argument('--eval_metric', type = str, default="prf", help="metric of ranking fairness, xauc or prf")
args = parser.parse_args()
dataset = args.dataset
eval_metric = args.eval_metric
np.random.seed(123456)
num_queries = 50
if eval_metric == 'xauc':
lambs_xorder = [0.01 * i for i in range(15)]
else:
lambs_xorder = [0.01 * i for i in range(15)]
epsilons = [0.01 * i for i in range(20)]
num_run = 2
aucs_con = np.zeros((len(epsilons), num_run))
disparity_train_con = np.zeros((len(epsilons), num_run))
disparity_test_con = np.zeros((len(epsilons), num_run))
aucs_un = np.zeros(num_run)
disparity_train_un = np.zeros(num_run)
disparity_test_un = np.zeros(num_run)
aucs_log = np.zeros(num_run)
disparity_train_log = np.zeros(num_run)
disparity_test_log = np.zeros(num_run)
aucs_xorder = np.zeros((len(lambs_xorder), num_run))
disparity_train_xorder = np.zeros((len(lambs_xorder), num_run))
disparity_test_xorder = np.zeros((len(lambs_xorder), num_run))
for run_idx in range(num_run):
print("Experiment index: {}/{}".format(run_idx + 1, num_run))
fin = open("data/preprocessed/" + dataset + "_data" + '.pkl', 'rb')
data_dict = pickle.load(fin)
X, y, a = data_dict["X"], data_dict["y"].astype(np.int), data_dict["a"].astype(np.float32)
fin = open("data/preprocessed/" + dataset + "_split_idx_" + str(run_idx) + '.pkl', 'rb')
data_dict = pickle.load(fin)
idx_train, idx_test = data_dict["idx_train"], data_dict["idx_test"]
# We randomly divide the examples into 'num_queries' queries.
queries = np.random.randint(0, num_queries, size=X.shape[0])
train_set = {
'features': X[idx_train, :],
'labels': y[idx_train],
'groups': a[idx_train],
'dimension': X.shape[-1],
'queries': queries[idx_train],
'num_queries': num_queries
}
# Test features, labels and protected groups.
test_set = {
'features': X[idx_test, :],
'labels': y[idx_test],
'groups': a[idx_test],
'dimension': X.shape[-1],
'queries': queries[idx_train],
'num_queries': num_queries
}
# Convert train/test set to paired data for later evaluation.
paired_train_set = convert_labeled_to_paired_data(train_set)
paired_test_set = convert_labeled_to_paired_data(test_set)
# Model hyper-parameters.
model_params = {
'loops': 10,
'iterations_per_loop': 100,
'learning_rate': 0.1,
'constraint_slack': 0.05,
'dual_scale': 0.1}
if eval_metric == 'xauc':
model_params['constraint_type'] = 'cross_group_equal_opportunity'
else:
model_params['constraint_type'] = 'marginal_equal_opportunity'
# Unconstrained optimization.
model_params['constrained'] = False
model_unc = train_model(paired_train_set, model_params)
# display_results(model_unc, paired_train_set, model_params, 'Unconstrained ',
# 'Train', show_header=True)
# display_results(model_unc, paired_test_set, model_params, 'Unconstrained ',
# 'Test')
pred_train_un = sigmoid(model_unc.predict(train_set['features'])[:,0])
pred_test_un = sigmoid(model_unc.predict(test_set['features'])[:,0])
y_train, a_train = y[idx_train], a[idx_train]
y_test, a_test = y[idx_test], a[idx_test]
auc_test = roc_auc_score(y_test, pred_test_un)
auc_train = roc_auc_score(y_train, pred_train_un)
disparity_train, _, _ = cal_fairness_metric(pred_train_un, y_train, a_train, metric=eval_metric)
disparity_test, _, _ = cal_fairness_metric(pred_test_un, y_test, a_test, metric=eval_metric)
print(auc_train, auc_test, disparity_train,disparity_test)
aucs_un[run_idx] = auc_test
disparity_train_un[run_idx] = disparity_train
disparity_test_un[run_idx] = disparity_test
# # Sorting the instances of group a and b
tr_a_score_sort, tr_b_score_sort, tr_a_label_sort, tr_b_label_sort = generate_sorted_groups(pred_train_un, y_train,
a_train)
te_a_score_sort, te_b_score_sort, te_a_label_sort, te_b_label_sort = generate_sorted_groups(pred_test_un, y_test,
a_test)
print("Running post-log...")
beta = -2.0
paras, disparities_train = [], []
# Searching on the space of \alpha with fixed \beta, this is the same as in the supplemental material of post-logit
for a_idx in range(100):
alpha = 0.1 * a_idx
adjust_tr_b_score_sort = 1 / (1 + np.exp(-(alpha * tr_b_score_sort + beta)))
disparity_train, _, _ = cal_fairness_metric_by_groups(tr_a_score_sort, adjust_tr_b_score_sort, tr_a_label_sort,
tr_b_label_sort, eval_metric)
paras.append(alpha)
disparities_train.append(disparity_train)
paras = np.array(paras)
disparities_train = np.array(disparities_train)
# Find the optimal \alpha to achieve fair result on training data
opt_idx = disparities_train.argsort()[0]
opt_para = paras[opt_idx]
adjust_tr_b_score_sort = 1 / (1 + np.exp(-(opt_para * tr_b_score_sort + beta)))
disparity_train, _, _ = cal_fairness_metric_by_groups(tr_a_score_sort, adjust_tr_b_score_sort,
tr_a_label_sort, tr_b_label_sort, eval_metric)
adjust_te_b_score_sort = 1 / (1 + np.exp(-(opt_para * te_b_score_sort + beta)))
disparity_test, _, _ = cal_fairness_metric_by_groups(te_a_score_sort, adjust_te_b_score_sort,
te_a_label_sort, te_b_label_sort, eval_metric)
auc_test = roc_auc_score(np.concatenate((te_a_label_sort, te_b_label_sort)),
np.concatenate((te_a_score_sort, adjust_te_b_score_sort)))
print(auc_test,disparity_train,disparity_test)
aucs_log[run_idx] = auc_test
disparity_train_log[run_idx] = disparity_train
disparity_test_log[run_idx] = disparity_test
print("Running xorder...")
k = y_train.sum() * (1 - y_train).sum()
for (lamb_idx, lamb) in enumerate(lambs_xorder):
post_tr_b_score, _ = post_b_score(tr_a_score_sort, tr_b_score_sort,
np.concatenate(([0], tr_a_label_sort), axis=0),
np.concatenate(([0], tr_b_label_sort), axis=0), lamb * k, _type=eval_metric)
post_te_b_score = post_score(tr_b_score_sort, post_tr_b_score, te_b_score_sort)
post_auc = roc_auc_score(list(te_a_label_sort) + list(te_b_label_sort),
list(te_a_score_sort) + list(post_te_b_score))
_, m_ab_tr, m_ba_tr = cal_fairness_metric_by_groups(tr_a_score_sort, post_tr_b_score, tr_a_label_sort,
tr_b_label_sort, eval_metric)
_, m_ab_te, m_ba_te = cal_fairness_metric_by_groups(te_a_score_sort, post_te_b_score, te_a_label_sort,
te_b_label_sort, eval_metric)
disparity_train_xorder[lamb_idx, run_idx] = abs(m_ab_tr - m_ba_tr)
disparity_test_xorder[lamb_idx, run_idx] = abs(m_ab_te - m_ba_te)
aucs_xorder[lamb_idx, run_idx] = post_auc
# Constrained optimization with TFCO.
model_params['constrained'] = True
for (eps_idx,constraint_slack) in enumerate(epsilons):
model_params['constraint_slack'] = constraint_slack
model_con = train_model(paired_train_set, model_params)
# display_results(model_con, paired_train_set, model_params, 'Constrained ',
# 'Train', show_header=True)
# display_results(model_con, paired_test_set, model_params, 'Constrained ',
# 'Test')
pred_train_con = model_con.predict(train_set['features'])[:, 0]
pred_test_con = model_con.predict(test_set['features'])[:, 0]
auc_test = roc_auc_score(y_test, pred_test_con)
auc_train = roc_auc_score(y_train, pred_train_con)
disparity_train, _, _ = cal_fairness_metric(pred_train_con, y_train, a_train, metric=eval_metric)
disparity_test, _, _ = cal_fairness_metric(pred_test_con, y_test, a_test, metric=eval_metric)
print(auc_train, auc_test, disparity_train, disparity_test)
aucs_con[eps_idx, run_idx] = auc_test
disparity_train_con[eps_idx, run_idx] = disparity_train
disparity_test_con[eps_idx, run_idx] = disparity_test
print(dataset, eval_metric)
print("Result of unadjusted:")
print("Train disparity:{:.3f}".format(disparity_train_un.mean()))
print("Test disparity: {:.3f}".format(disparity_test_un.mean()))
print("Test total AUC: {:.3f}".format(aucs_un.mean()))
print("Result for post-log:")
print("Train disparity:{:.3f}".format(disparity_train_log.mean()))
print("Test disparity: {:.3f}".format(disparity_test_log.mean()))
print("Test total AUC: {:.3f}".format(aucs_log.mean()))
print("Result for xorder under different weights:")
print("Train disparity:", array2str(disparity_train_xorder.mean(1)))
print("Test disparity: ", array2str(disparity_test_xorder.mean(1)))
print("Test total AUC: ", array2str(aucs_xorder.mean(1)))
print("Result for constrains:")
print("Train disparity:", array2str(disparity_train_con.mean(1)))
print("Test disparity: ", array2str(disparity_test_con.mean(1)))
print("Test total AUC: ", array2str(aucs_con.mean(1)))