-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinference_global.py
216 lines (181 loc) · 7.09 KB
/
inference_global.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
from typing import Optional, Tuple
import numpy as np
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from train_global import Mapper, th2image
from train_global import inj_forward_text, inj_forward_crossattention, validation
import torch.nn as nn
from datasets import CustomDatasetWithBG
def _pil_from_latents(vae, latents):
_latents = 1 / 0.18215 * latents.clone()
image = vae.decode(_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
ret_pil_images = [Image.fromarray(image) for image in images]
return ret_pil_images
def pww_load_tools(
device: str = "cuda:0",
scheduler_type=LMSDiscreteScheduler,
mapper_model_path: Optional[str] = None,
diffusion_model_path: Optional[str] = None,
model_token: Optional[str] = None,
) -> Tuple[
UNet2DConditionModel,
CLIPTextModel,
CLIPTokenizer,
AutoencoderKL,
CLIPVisionModel,
Mapper,
LMSDiscreteScheduler,
]:
# 'CompVis/stable-diffusion-v1-4'
local_path_only = diffusion_model_path is not None
vae = AutoencoderKL.from_pretrained(
diffusion_model_path,
subfolder="vae",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16,)
# Load models and create wrapper for stable diffusion
for _module in text_encoder.modules():
if _module.__class__.__name__ == "CLIPTextTransformer":
_module.__class__.__call__ = inj_forward_text
unet = UNet2DConditionModel.from_pretrained(
diffusion_model_path,
subfolder="unet",
use_auth_token=model_token,
torch_dtype=torch.float16,
local_files_only=local_path_only,
)
mapper = Mapper(input_dim=1024, output_dim=768)
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.__class__.__call__ = inj_forward_crossattention
shape = _module.to_k.weight.shape
to_k_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global)
shape = _module.to_v.weight.shape
to_v_global = nn.Linear(shape[1], shape[0], bias=False)
mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global)
mapper.load_state_dict(torch.load(mapper_model_path, map_location='cpu'))
mapper.half()
for _name, _module in unet.named_modules():
if 'attn1' in _name: continue
if _module.__class__.__name__ == "CrossAttention":
_module.add_module('to_k_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_k'))
_module.add_module('to_v_global', mapper.__getattr__(f'{_name.replace(".", "_")}_to_v'))
vae.to(device), unet.to(device), text_encoder.to(device), image_encoder.to(device), mapper.to(device)
scheduler = scheduler_type(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
vae.eval()
unet.eval()
image_encoder.eval()
text_encoder.eval()
mapper.eval()
return vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--token_index",
type=str,
default="full",
help="Selected index for word embedding.",
)
parser.add_argument(
"--global_mapper_path",
type=str,
required=True,
help="Path to pretrained global mapping network.",
)
parser.add_argument(
"--output_dir",
type=str,
default='outputs',
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--placeholder_token",
type=str,
default="S",
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--template",
type=str,
default="a photo of a {}",
help="Text template for customized genetation.",
)
parser.add_argument(
"--test_data_dir", type=str, default=None, required=True, help="A folder containing the testing data."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--suffix",
type=str,
default="object",
help="Suffix of save directory.",
)
parser.add_argument(
"--selected_data",
type=int,
default=-1,
help="Data index. -1 for all.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for testing.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
save_dir = os.path.join(args.output_dir, f'{args.suffix}_token{args.token_index}')
os.makedirs(save_dir, exist_ok=True)
vae, unet, text_encoder, tokenizer, image_encoder, mapper, scheduler = pww_load_tools(
"cuda:0",
LMSDiscreteScheduler,
diffusion_model_path=args.pretrained_model_name_or_path,
mapper_model_path=args.global_mapper_path,
)
train_dataset = CustomDatasetWithBG(
data_root=args.test_data_dir,
tokenizer=tokenizer,
size=512,
placeholder_token=args.placeholder_token,
template=args.template,
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=False)
for step, batch in enumerate(train_dataloader):
if args.selected_data > -1 and step != args.selected_data:
continue
batch["pixel_values"] = batch["pixel_values"].to("cuda:0")
batch["pixel_values_clip"] = batch["pixel_values_clip"].to("cuda:0").half()
batch["input_ids"] = batch["input_ids"].to("cuda:0")
batch["index"] = batch["index"].to("cuda:0").long()
print(step, batch['text'])
syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, vae, batch["pixel_values_clip"].device, 5,
token_index=args.token_index, seed=args.seed)
concat = np.concatenate((np.array(syn_images[0]), th2image(batch["pixel_values"][0])), axis=1)
Image.fromarray(concat).save(os.path.join(save_dir, f'{str(step).zfill(5)}_{str(args.seed).zfill(5)}.jpg'))