-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtest_ccsr_tile.py
252 lines (206 loc) · 11.9 KB
/
test_ccsr_tile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import glob
import math
import time
import argparse
import numpy as np
from PIL import Image
import safetensors.torch
import torch
from torchvision import transforms
import torchvision.transforms.functional as F
from accelerate import Accelerator
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
UniPCMultistepScheduler,
DPMSolverMultistepScheduler,
DDPMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from pipelines.pipeline_ccsr import StableDiffusionControlNetPipeline
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from models.controlnet import ControlNetModel
def load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention):
scheduler_mapping = {
'unipcmultistep': UniPCMultistepScheduler,
'ddpm': DDPMScheduler,
'dpmmultistep': DPMSolverMultistepScheduler,
}
try:
scheduler_cls = scheduler_mapping[args.sample_method]
except KeyError:
raise ValueError(f"Invalid sample_method: {args.sample_method}")
scheduler = scheduler_cls.from_pretrained(args.pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
feature_extractor = CLIPImageProcessor.from_pretrained(os.path.join(args.pretrained_model_path, "feature_extractor"))
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_path, subfolder="controlnet")
vae_path = args.vae_model_path if args.vae_model_path else args.pretrained_model_path
vae = AutoencoderKL.from_pretrained(vae_path, subfolder="vae")
# Freeze models
for model in [vae, text_encoder, unet, controlnet]:
model.requires_grad_(False)
# Enable xformers if available
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Ensure it is installed correctly.")
# Initialize pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
)
if args.tile_vae:
validation_pipeline._init_tiled_vae(
encoder_tile_size=args.vae_encoder_tile_size,
decoder_tile_size=args.vae_decoder_tile_size
)
# Set weight dtype based on mixed precision
dtype_mapping = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
weight_dtype = dtype_mapping.get(accelerator.mixed_precision, torch.float32)
# Move models to accelerator device with appropriate dtype
for model in [text_encoder, vae, unet, controlnet]:
model.to(accelerator.device, dtype=weight_dtype)
return validation_pipeline
def main(args, enable_xformers_memory_efficient_attention=True,):
detailed_output_dir = os.path.join(
args.output_dir,
f"sr_{args.baseline_name}_{args.sample_method}_{str(args.num_inference_steps).zfill(3)}steps_{args.start_point}{args.start_steps}_size{args.process_size}_cfg{args.guidance_scale}"
)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output folder creation
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
os.makedirs(detailed_output_dir, exist_ok=True)
accelerator.init_trackers("Controlnet")
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention)
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
if args.seed is not None:
generator.manual_seed(args.seed)
image_paths = sorted(glob.glob(os.path.join(args.image_path, "*.*"))) if os.path.isdir(args.image_path) else [args.image_path]
time_records = []
for image_path in image_paths:
validation_image = Image.open(image_path).convert("RGB")
negative_prompt = args.negative_prompt
validation_prompt = args.added_prompt
ori_width, ori_height = validation_image.size
resize_flag = False
rscale = args.upscale
if ori_width < args.process_size//rscale or ori_height < args.process_size//rscale:
scale = (args.process_size//rscale)/min(ori_width, ori_height)
tmp_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
validation_image = tmp_image
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*rscale, validation_image.size[1]*rscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
resize_flag = True #
for sample_idx in range(args.sample_times):
os.makedirs(f'{detailed_output_dir}/sample{str(sample_idx).zfill(2)}/', exist_ok=True)
for sample_idx in range(args.sample_times):
inference_time, image = pipeline(
args.t_max,
args.t_min,
args.tile_diffusion,
args.tile_diffusion_size,
args.tile_diffusion_stride,
args.added_prompt,
validation_image,
num_inference_steps=args.num_inference_steps,
generator=generator,
height=height,
width=width,
guidance_scale=args.guidance_scale,
negative_prompt=args.negative_prompt,
conditioning_scale=args.conditioning_scale,
start_steps=args.start_steps,
start_point=args.start_point,
use_vae_encode_condition=args.use_vae_encode_condition,
)
image = image.images[0]
print(f"Inference time: {inference_time:.4f} seconds")
time_records.append(inference_time)
# Apply color fixing if specified
if args.align_method != 'nofix':
fix_func = wavelet_color_fix if args.align_method == 'wavelet' else adain_color_fix
image = fix_func(image, validation_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
image_tensor = torch.clamp(F.to_tensor(image), 0, 1)
final_image = transforms.ToPILImage()(image_tensor)
base_name = os.path.splitext(os.path.basename(image_path))[0]
save_path = os.path.join(detailed_output_dir, f"sample{str(sample_idx).zfill(2)}", f"{base_name}.png")
image.save(save_path)
# Calculate the average inference time, excluding the first few for stabilization
if len(time_records) > 3:
average_time = np.mean(time_records[3:])
else:
average_time = np.mean(time_records)
if accelerator.is_main_process:
print(f"Average inference time: {average_time:.4f} seconds")
# Save the run settings to a file
settings_path = os.path.join(detailed_output_dir, "settings.txt")
with open(settings_path, 'w') as f:
f.write("------------------ start ------------------\n")
for key, value in vars(args).items():
f.write(f"{key} : {value}\n")
f.write("------------------- end -------------------\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion ControlNet Pipeline for Super-Resolution")
parser.add_argument("--controlnet_model_path", type=str, default="", help="Path to ControlNet model")
parser.add_argument("--pretrained_model_path", type=str, default="", help="Path to pretrained model")
parser.add_argument("--vae_model_path", type=str, default="", help="Path to VAE model")
parser.add_argument("--added_prompt", type=str, default="clean, high-resolution, 8k", help="Additional prompt for generation")
parser.add_argument("--negative_prompt", type=str, default="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", help="Negative prompt to avoid certain features")
parser.add_argument("--image_path", type=str, default="", help="Path to input image or directory")
parser.add_argument("--output_dir", type=str, default="", help="Directory to save outputs")
parser.add_argument("--mixed_precision", type=str, choices=["no", "fp16", "bf16"], default="fp16", help="Mixed precision mode")
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Guidance scale for generation")
parser.add_argument("--conditioning_scale", type=float, default=1.0, help="Conditioning scale")
parser.add_argument("--num_inference_steps", type=int, default=1, help="Number of inference steps(not the final inference time)")
# final_inference_time = num_inference_steps * (t_max - t_min) + 1
parser.add_argument("--t_max", type=float, default=0.6666, help="Maximum timestep")
parser.add_argument("--t_min", type=float, default=0.0, help="Minimum timestep")
parser.add_argument("--process_size", type=int, default=512, help="Processing size of the image")
parser.add_argument("--upscale", type=int, default=1, help="Upscaling factor")
parser.add_argument("--seed", type=int, default=None, help="Random seed")
parser.add_argument("--sample_times", type=int, default=5, help="Number of samples to generate per image")
parser.add_argument("--sample_method", type=str, choices=['unipcmultistep', 'ddpm', 'dpmmultistep'], default='ddpm', help="Sampling method")
parser.add_argument("--align_method", type=str, choices=['wavelet', 'adain', 'nofix'], default='adain', help="Alignment method for color fixing")
parser.add_argument("--start_steps", type=int, default=999, help="Starting steps")
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='lr', help="Starting point for generation")
parser.add_argument("--baseline_name", type=str, default='ccsr-v2', help="Baseline name for output naming")
parser.add_argument("--use_vae_encode_condition", action='store_true', help="Use VAE encoding LQ condition")
# Tiling settings for high-resolution SR
parser.add_argument("--tile_diffusion", action="store_true", help="Optionally! Enable tile-based diffusion")
parser.add_argument("--tile_diffusion_size", type=int, default=512, help="Tile size for diffusion")
parser.add_argument("--tile_diffusion_stride", type=int, default=256, help="Stride size for diffusion tiles")
parser.add_argument("--tile_vae", action="store_true", help="Optionally! Enable tiling for VAE")
parser.add_argument("--vae_decoder_tile_size", type=int, default=224, help="Tile size for VAE decoder")
parser.add_argument("--vae_encoder_tile_size", type=int, default=1024, help="Tile size for VAE encoder")
args = parser.parse_args()
main(args)