-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_reid.py
203 lines (170 loc) · 7.06 KB
/
main_reid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# encoding: utf-8
import os
import sys
from os import path as osp
from pprint import pprint
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from config import opt
from datasets import data_manager
from datasets.data_loader import ImageData
from datasets.samplers import RandomIdentitySampler
from models.progressive_networks import ResNetBuilder, IDE, Resnet, BFE
from trainers.evaluator import ResNetEvaluator
from trainers.trainer import cls_tripletTrainer
from utils.loss import CrossEntropyLabelSmooth, TripletLoss, Margin
from utils.LiftedStructure import LiftedStructureLoss
from utils.DistWeightDevianceLoss import DistWeightBinDevianceLoss
from utils.serialization import Logger, save_checkpoint
from utils.transforms import TestTransform, TrainTransform
def train(**kwargs):
opt._parse(kwargs)
# set random seed and cudnn benchmark
torch.manual_seed(opt.seed)
os.makedirs(opt.save_dir, exist_ok=True)
use_gpu = torch.cuda.is_available()
sys.stdout = Logger(osp.join(opt.save_dir, 'log_train.txt'))
print('=========user config==========')
pprint(opt._state_dict())
print('============end===============')
if use_gpu:
print('currently using GPU')
cudnn.benchmark = True
torch.cuda.manual_seed_all(opt.seed)
else:
print('currently using cpu')
print('initializing dataset {}'.format(opt.dataset))
dataset = data_manager.init_dataset(name=opt.dataset, mode=opt.mode)
pin_memory = True if use_gpu else False
summary_writer = SummaryWriter(osp.join(opt.save_dir, 'tensorboard_log'))
trainloader = DataLoader(
ImageData(dataset.train, TrainTransform(opt.datatype)),
sampler=RandomIdentitySampler(dataset.train, opt.num_instances),
batch_size=opt.train_batch, num_workers=opt.workers,
pin_memory=pin_memory, drop_last=True
)
queryloader = DataLoader(
ImageData(dataset.query, TestTransform(opt.datatype)),
batch_size=opt.test_batch, num_workers=opt.workers,
pin_memory=pin_memory
)
galleryloader = DataLoader(
ImageData(dataset.gallery, TestTransform(opt.datatype)),
batch_size=opt.test_batch, num_workers=opt.workers,
pin_memory=pin_memory
)
queryFliploader = DataLoader(
ImageData(dataset.query, TestTransform(opt.datatype, True)),
batch_size=opt.test_batch, num_workers=opt.workers,
pin_memory=pin_memory
)
galleryFliploader = DataLoader(
ImageData(dataset.gallery, TestTransform(opt.datatype, True)),
batch_size=opt.test_batch, num_workers=opt.workers,
pin_memory=pin_memory
)
print('initializing model ...')
if opt.model_name == 'softmax' or opt.model_name == 'softmax_triplet':
model = ResNetBuilder(dataset.num_train_pids, 1, True)
elif opt.model_name == 'triplet':
model = ResNetBuilder(None, 1, True)
elif opt.model_name == 'bfe':
if opt.datatype == "person":
model = BFE(dataset.num_train_pids, 1.0, 0.33)
else:
model = BFE(dataset.num_train_pids, 0.5, 0.5)
elif opt.model_name == 'ide':
model = IDE(dataset.num_train_pids)
elif opt.model_name == 'resnet':
model = Resnet(dataset.num_train_pids)
optim_policy = model.get_optim_policy()
if opt.pretrained_model:
state_dict = torch.load(opt.pretrained_model)['state_dict']
#state_dict = {k: v for k, v in state_dict.items() \
# if not ('reduction' in k or 'softmax' in k)}
model.load_state_dict(state_dict, False)
print('load pretrained model ' + opt.pretrained_model)
print('model size: {:.5f}M'.format(sum(p.numel() for p in model.parameters()) / 1e6))
if use_gpu:
model = nn.DataParallel(model).cuda()
reid_evaluator = ResNetEvaluator(model)
if opt.evaluate:
reid_evaluator.evaluate(queryloader, galleryloader,
queryFliploader, galleryFliploader, re_ranking=opt.re_ranking, savefig=opt.savefig)
return
#xent_criterion = nn.CrossEntropyLoss()
xent_criterion = CrossEntropyLabelSmooth(dataset.num_train_pids)
if opt.loss == 'triplet':
embedding_criterion = TripletLoss(opt.margin)
elif opt.loss == 'lifted':
embedding_criterion = LiftedStructureLoss(hard_mining=True)
elif opt.loss == 'weight':
embedding_criterion = Margin()
def criterion(triplet_y, softmax_y, labels):
losses = [embedding_criterion(output, labels)[0] for output in triplet_y] + \
[xent_criterion(output, labels) for output in softmax_y]
loss = sum(losses)
return loss
# get optimizer
if opt.optim == "sgd":
optimizer = torch.optim.SGD(optim_policy, lr=opt.lr, momentum=0.9, weight_decay=opt.weight_decay)
else:
optimizer = torch.optim.Adam(optim_policy, lr=opt.lr, weight_decay=opt.weight_decay)
start_epoch = opt.start_epoch
# get trainer and evaluator
reid_trainer = cls_tripletTrainer(opt, model, optimizer, criterion, summary_writer)
def adjust_lr(optimizer, ep):
if ep < 50:
lr = 1e-4*(ep//5+1)
elif ep < 200:
lr = 1e-3
elif ep < 300:
lr = 1e-4
else:
lr = 1e-5
for p in optimizer.param_groups:
p['lr'] = lr
# start training
best_rank1 = opt.best_rank
best_epoch = 0
for epoch in range(start_epoch, opt.max_epoch):
if opt.adjust_lr:
adjust_lr(optimizer, epoch + 1)
reid_trainer.train(epoch, trainloader)
# skip if not save model
if opt.eval_step > 0 and (epoch + 1) % opt.eval_step == 0 or (epoch + 1) == opt.max_epoch:
if opt.mode == 'class':
rank1 = test(model, queryloader)
else:
rank1 = reid_evaluator.evaluate(queryloader, galleryloader, queryFliploader, galleryFliploader)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({'state_dict': state_dict, 'epoch': epoch + 1},
is_best=is_best, save_dir=opt.save_dir,
filename='checkpoint_ep' + str(epoch + 1) + '.pth.tar')
print('Best rank-1 {:.1%}, achived at epoch {}'.format(best_rank1, best_epoch))
def test(model, queryloader):
model.eval()
correct = 0
with torch.no_grad():
for data, target, _ in queryloader:
output = model(data).cpu()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
rank1 = 100. * correct / len(queryloader.dataset)
print('\nTest set: Accuracy: {}/{} ({:.2f}%)\n'.format(correct, len(queryloader.dataset), rank1))
return rank1
if __name__ == '__main__':
import fire
fire.Fire()