forked from Zaoqu-Liu/IRLS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Consensus cluster.R
218 lines (184 loc) · 7.58 KB
/
Consensus cluster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
rm(list = ls())
library(dplyr)
library(data.table)
library(tidyr)
library(tibble)
library(GSVA)
library(ConsensusClusterPlus)
library(ComplexHeatmap)
library(ggplot2)
library(ggsci)
library(ggpubr)
library(ComplexHeatmap)
library(circlize)
load('/Users/CRC-data-lnc/TCGA.rda')
rm(CRC.lncRNA)
load('/Users/Tool and Data/cellMarker_ssGSEA.Rdata')
# -------------------------------------------------------------------------
gsva_data <- gsva(as.matrix(CRC.mRNA),cellMarker, method = "ssgsea")
ss <- gsva_data
# -------------------------------------------------------------------------
dir.create('ConsensusCluster/')
## 一致性聚类
results = ConsensusClusterPlus(as.matrix(ss),
maxK=9,
reps=100,
pItem=0.8,
pFeature=1,
tmyPal = c('navy','darkred'),
title='ConsensusCluster/',
clusterAlg="km",
distance="euclidean",
seed=123456,
plot="pdf")
icl <- calcICL(results,title = 'ConsensusCluster/',plot = 'pdf')
## PAC = Proportion of ambiguous clustering 模糊聚类比例
Kvec = 2:9
x1 = 0.1; x2 = 0.9
PAC = rep(NA,length(Kvec))
names(PAC) = paste("K=",Kvec,sep="")
for(i in Kvec){
M = results[[i]]$consensusMatrix
Fn = ecdf(M[lower.tri(M)])
PAC[i-1] = Fn(x2) - Fn(x1)
}
optK = Kvec[which.min(PAC)]
optK
PAC <- as.data.frame(PAC)
PAC$K <- 2:9
library(ggplot2)
ggplot(PAC,aes(factor(K),PAC,group=1))+
geom_line()+
theme_bw(base_rect_size = 1.5)+
geom_point(size=4,shape=21,color='darkred',fill='orange')+
ggtitle('Proportion of ambiguous clustering')+
xlab('Cluster number K')+ylab(NULL)+
theme(axis.text = element_text(size=12),
plot.title = element_text(hjust=0.5),
axis.title = element_text(size=13))
ggsave(filename = 'ConsensusCluster/PAC.pdf',width = 3.8,height = 4)
## 保存分型信息
clusterNum=2
cluster=results[[clusterNum]][["consensusClass"]]
sub <- data.frame(Sample=names(cluster),Cluster=cluster)
sub$Cluster <- paste0('C',sub$Cluster)
table(sub$Cluster)
head(sub)
my <- results[[2]][["ml"]]
library(pheatmap)
rownames(my) <- sub$Sample
colnames(my) <- sub$Sample
pheatmap(1-my,show_colnames = F,show_rownames = F,
treeheight_row = 20,treeheight_col = 20,
clustering_method = 'complete',
color = colorRampPalette(c("white","#C75D30"))(50),
annotation_names_row = F,annotation_names_col = F,
annotation_row = data.frame(Cluster=sub$Cluster,row.names = sub$Sample),
annotation_col = data.frame(Cluster=sub$Cluster,row.names = sub$Sample),
annotation_colors = list(Cluster=c('C2'='#B5739D','C1'='#4E8279')))
library(export)
graph2pdf(file='cluster2.pdf',width=5.5,height=4.5)
# -------------------------------------------------------------------------
ss2 <- merge(sub,t(ss),by.x=1,by.y=0)
ss2 <- pivot_longer(ss2,3:30,names_to = 'cell',values_to = 'value')
ggplot(ss2,aes(cell,value,fill=Cluster))+
geom_boxplot(outlier.colour = NA)+
stat_compare_means(label = 'p.signif')+
theme(axis.text.x = element_text(angle=90,hjust=1,vjust=0.5))
# -------------------------------------------------------------------------
TCGA_clin <- merge(sub,TCGA_clin,by=1)
my <- TCGA_clin[,c(1,2,7,8,12,13)]%>%column_to_rownames('Sample')
my$Age <- ifelse(my$Age>65,'>65','≤65')
table(my$Age)
my$Gender <- Hmisc::capitalize(my$Gender)
my <- my[order(my$Cluster,my$Age,my$Stage,my$Status,my$Gender),]
ee <- t(scale(t(ee)))
table(my$Cluster)
# -------------------------------------------------------------------------
my[is.na(my)] <- 'NA'
my$Age <- factor(my$Age,levels = c('≤65','>65'))
my$Gender <- factor(my$Gender,levels = c('Female','Male'))
my$Stage <- factor(my$Stage,levels = c('I','II','III','IV','NA'))
my$Cluster <- factor(my$Cluster)
my$Status <- factor(my$Status)
# -------------------------------------------------------------------------
Cluster <- c('#4E8279','#B5739D')
names(Cluster) <- levels(my$Cluster)
Age <- c(pal_nejm(alpha = 0.9)(8)[3],'#CF4E27')
names(Age) <- levels(my$Age)
table(my$Gender)
Gender <- c('#E0864A','rosybrown')
names(Gender) <- levels(my$Gender)
table(my$Stage)
Stage <- c('cornsilk','paleturquoise','goldenrod','firebrick','White')
names(Stage) <- levels(my$Stage)
table(my$Recurrence)
table(my$Status)
Status <- c('lavenderblush','slategray')
names(Status) <- levels(my$Status)
# -------------------------------------------------------------------------
Top = HeatmapAnnotation(Cluster=my$Cluster,
Age=my$Age,
Gender=my$Gender,
Stage= my$Stage,
Status = my$Status,
annotation_legend_param=list(labels_gp = gpar(fontsize = 10),border = T,
title_gp = gpar(fontsize = 10,fontface = "bold"),
ncol=1),
border = T,
col=list(Cluster = Cluster,
Age = Age,
Gender = Gender,
Stage= Stage,
Status = Status
),
show_annotation_name = TRUE,
annotation_name_side="left",
annotation_name_gp = gpar(fontsize = 10))
Heatmap(ee,name='Z-score',
top_annotation = Top,
cluster_rows = T,
col=colorRamp2(c(-2,0,2),c('#21b6af','white','#eeba4d')),#49b0d9
color_space = "RGB",
cluster_columns = FALSE,border = T,
row_order=NULL,
row_names_side = 'left',
column_order=NULL,
show_column_names = FALSE,
row_names_gp = gpar(fontsize = 9),
column_split = c(rep(1,316),rep(2,268)),
gap = unit(1, "mm"),
column_title = NULL,
column_title_gp = gpar(fontsize = 10),
show_heatmap_legend = TRUE,
heatmap_legend_param=list(labels_gp = gpar(fontsize = 10), border = T,
title_gp = gpar(fontsize = 10, fontface = "bold")),
column_gap = unit(2,'mm')
)
library(export)
graph2pdf(file='cell-heatmap.pdf',width=9,height=5.5)
# -------------------------------------------------------------------------
ee <- as.data.frame(ss)[,rownames(my)]
tt <- cbind(Cluster=as.character(my$Cluster),t(ee))
tt <- as.data.frame(tt)
tt2 <- pivot_longer(tt,cols = 2:29,names_to = 'cell',values_to = 'value')
tt2$value <- as.numeric(tt2$value)
# -------------------------------------------------------------------------
source("GeomSplitViolin.R")
ggplot(tt2, aes(cell,value, fill = Cluster)) +
geom_split_violin(draw_quantiles = c(0.25, 0.5, 0.75), #画4分位线
trim = T, #是否修剪小提琴图的密度曲线
linetype = "solid", #周围线的轮廓
color = "black",
size = 0.35,
na.rm = T,
position ="identity")+ #周围线粗细
ylab("Relative Infiltration") + xlab(NULL) +
scale_fill_manual(values = c('#21b6af','#eeba4d'))+
theme_classic()+
theme(axis.text.x = element_text(angle = 60, hjust = 1, vjust = 1,size=10),
legend.position=c(0.05,0.003),legend.justification = c(0,0),
axis.title.y = element_text(size=12))
ggsave(filename = 'cell-boxplot.pdf',width = 8,height=4.3)
# -------------------------------------------------------------------------
save(TCGA_clin,ss,file = 'Cluster+ssgsea.Rda')