diff --git a/tests/aux_tests/test_speaker_manager.py b/tests/aux_tests/test_speaker_manager.py index 839952356e..890cc02398 100644 --- a/tests/aux_tests/test_speaker_manager.py +++ b/tests/aux_tests/test_speaker_manager.py @@ -22,42 +22,42 @@ class SpeakerManagerTest(unittest.TestCase): """Test SpeakerManager for loading embedding files and computing d_vectors from waveforms""" - # @staticmethod - # def test_speaker_embedding(): - # # load config - # config = load_config(encoder_config_path) - # config.audio.resample = True + @staticmethod + def test_speaker_embedding(): + # load config + config = load_config(encoder_config_path) + config.audio.resample = True - # # create a dummy speaker encoder - # model = setup_encoder_model(config) - # save_checkpoint(model, None, None, get_tests_input_path(), 0) + # create a dummy speaker encoder + model = setup_encoder_model(config) + save_checkpoint(model, None, None, get_tests_input_path(), 0) - # # load audio processor and speaker encoder - # ap = AudioProcessor(**config.audio) - # manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) + # load audio processor and speaker encoder + ap = AudioProcessor(**config.audio) + manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) - # # load a sample audio and compute embedding - # waveform = ap.load_wav(sample_wav_path) - # mel = ap.melspectrogram(waveform) - # d_vector = manager.compute_embeddings(mel) - # assert d_vector.shape[1] == 256 + # load a sample audio and compute embedding + waveform = ap.load_wav(sample_wav_path) + mel = ap.melspectrogram(waveform) + d_vector = manager.compute_embeddings(mel) + assert d_vector.shape[1] == 256 - # # compute d_vector directly from an input file - # d_vector = manager.compute_embedding_from_clip(sample_wav_path) - # d_vector2 = manager.compute_embedding_from_clip(sample_wav_path) - # d_vector = torch.FloatTensor(d_vector) - # d_vector2 = torch.FloatTensor(d_vector2) - # assert d_vector.shape[0] == 256 - # assert (d_vector - d_vector2).sum() == 0.0 + # compute d_vector directly from an input file + d_vector = manager.compute_embedding_from_clip(sample_wav_path) + d_vector2 = manager.compute_embedding_from_clip(sample_wav_path) + d_vector = torch.FloatTensor(d_vector) + d_vector2 = torch.FloatTensor(d_vector2) + assert d_vector.shape[0] == 256 + assert (d_vector - d_vector2).sum() == 0.0 - # # compute d_vector from a list of wav files. - # d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) - # d_vector3 = torch.FloatTensor(d_vector3) - # assert d_vector3.shape[0] == 256 - # assert (d_vector - d_vector3).sum() != 0.0 + # compute d_vector from a list of wav files. + d_vector3 = manager.compute_embedding_from_clip([sample_wav_path, sample_wav_path2]) + d_vector3 = torch.FloatTensor(d_vector3) + assert d_vector3.shape[0] == 256 + assert (d_vector - d_vector3).sum() != 0.0 - # # remove dummy model - # os.remove(encoder_model_path) + # remove dummy model + os.remove(encoder_model_path) def test_speakers_file_processing(self): manager = SpeakerManager(d_vectors_file_path=d_vectors_file_path)