diff --git a/theories/Q_denumerable.v b/theories/Q_denumerable.v index fff4ce2..538653b 100644 --- a/theories/Q_denumerable.v +++ b/theories/Q_denumerable.v @@ -21,15 +21,15 @@ (** We start by some general notions for expressing the bijection *) -Definition identity (A:Type) := fun a:A=> a. -Definition compose (A B C:Type) (g:B->C) (f:A->B) := fun a:A=>g(f a). +Definition identity (A:Type) := fun (a:A) => a. +Definition compose (A B C:Type) (g:B->C) (f:A->B) := fun (a:A) => g(f a). Section Denumerability. (** What it means to have the same cardinality *) Definition same_cardinality (A:Type) (B:Type) := {f:A->B & { g:B->A | - (forall b,(compose _ _ _ f g) b= (identity B) b) /\ + (forall b,(compose _ _ _ f g) b = (identity B) b) /\ forall a,(compose _ _ _ g f) a = (identity A) a}}. (** What it means to be a denumerable *) @@ -58,10 +58,8 @@ Defined. End Denumerability. - (** We first prove that [Z] is denumerable *) -From Coq Require Div2. From Coq Require Import ZArith. From Coq Require Import Lia. @@ -73,11 +71,12 @@ Definition Z_to_nat_i (z:Z) :nat := | Zneg p => pred (Nat.double (nat_of_P p)) end. -(** Some lemmas about parity. They could be added to [Arith.Div2] *) -Lemma odd_pred2n: forall n : nat, Even.odd n -> {p : nat | n = pred (Nat.double p)}. +(** Some lemmas about parity. *) +Lemma odd_pred2n: forall n : nat, Nat.Odd_alt n -> {p : nat | n = pred (Nat.double p)}. Proof. intros n H_odd; - rewrite (Div2.odd_double _ H_odd); + apply Nat.Odd_alt_Odd in H_odd; + rewrite (Nat.Odd_double _ H_odd); exists (S (Nat.div2 n)); generalize (Nat.div2 n); clear n H_odd; intros n; @@ -86,12 +85,19 @@ Proof. reflexivity. Defined. +Lemma even_2n : forall n : nat, Nat.Even_alt n -> {p : nat | n = Nat.double p}. +Proof. +intros n H_even; exists (Nat.div2 n). +apply Nat.Even_alt_Even in H_even. +apply Nat.Even_double; assumption. +Defined. + Lemma even_odd_exists_dec : forall n, {p : nat | n = Nat.double p} + {p : nat | n = pred (Nat.double p)}. Proof. intro n; - destruct (Even.even_odd_dec n) as [H_parity|H_parity]; - [ left; apply (Div2.even_2n _ H_parity) - | right; apply (odd_pred2n _ H_parity)]. + destruct (Nat.Even_Odd_dec n) as [H_parity|H_parity]; + [ left; apply Nat.Even_alt_Even in H_parity; apply (even_2n _ H_parity) + | right; apply Nat.Odd_alt_Odd in H_parity; apply (odd_pred2n _ H_parity)]. Defined. (** An injection from [nat] to [Z] *) @@ -106,17 +112,20 @@ Proof. unfold Nat.double; intros m n; lia. Defined. -Lemma parity_mismatch_not_eq:forall m n, Even.even m -> Even.odd n -> ~m=n. +Lemma parity_mismatch_not_eq:forall m n, Nat.Even_alt m -> Nat.Odd_alt n -> m <> n. Proof. - intros m n H_even H_odd H_eq; subst m; - apply (Even.not_even_and_odd n); trivial. + intros m n H_even H_odd H_eq; subst m. + apply Nat.Even_alt_Even in H_even. + apply Nat.Odd_alt_Odd in H_odd. + apply (Nat.Even_Odd_False n); trivial. Defined. -Lemma even_double:forall n, Even.even (Nat.double n). +Lemma even_double : forall n, Nat.Even_alt (Nat.double n). Proof. intro n; unfold Nat.double; - replace (n + n) with (2*n); auto with arith; lia. + replace (n + n) with (2*n); + [apply Nat.Even_alt_Even; exists n; reflexivity | lia]. Defined. Lemma double_S_neq_pred:forall m n, ~Nat.double (S m) = pred (Nat.double n).