-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDemoImplicitSystemF.v
366 lines (314 loc) · 9.23 KB
/
DemoImplicitSystemF.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
Set Implicit Arguments.
Require Import Lia.
Require Import Arith.
Require Export Coq.Program.Equality.
From Dblib Require Import DblibTactics DeBruijn Environments.
(* ---------------------------------------------------------------------------- *)
(* The syntax of untyped terms. *)
Inductive term :=
| TVar: nat -> term
| TAbs: term -> term
| TApp: term -> term -> term.
(* ---------------------------------------------------------------------------- *)
(* The binding structure of terms. *)
Instance Var_term : Var term := {
var := TVar (* avoid eta-expansion *)
}.
Fixpoint traverse_term (f : nat -> nat -> term) l t :=
match t with
| TVar x =>
f l x
| TAbs t =>
TAbs (traverse_term f (1 + l) t)
| TApp t1 t2 =>
TApp (traverse_term f l t1) (traverse_term f l t2)
end.
Instance Traverse_term : Traverse term term := {
traverse := traverse_term
}.
Instance TraverseVarInjective_term : @TraverseVarInjective term _ term _.
Proof.
constructor. prove_traverse_var_injective.
Qed.
Instance TraverseFunctorial_term : @TraverseFunctorial term _ term _.
Proof.
constructor. prove_traverse_functorial.
Qed.
Instance TraverseRelative_term : @TraverseRelative term term _.
Proof.
constructor. prove_traverse_relative.
Qed.
Instance TraverseIdentifiesVar_term : @TraverseIdentifiesVar term _ _.
Proof.
constructor. prove_traverse_identifies_var.
Qed.
Instance TraverseVarIsIdentity_term : @TraverseVarIsIdentity term _ term _.
Proof.
constructor. prove_traverse_var_is_identity.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Reduction semantics. *)
Inductive red : term -> term -> Prop :=
| RedBeta:
forall t1 t2,
red (TApp (TAbs t1) t2)
(subst t2 0 t1)
| RedContextTAbs:
forall t1 t2,
red t1 t2 ->
red (TAbs t1) (TAbs t2)
| RedContextTAppLeft:
forall t1 t2 t,
red t1 t2 ->
red (TApp t1 t) (TApp t2 t)
| RedContextTAppRight:
forall t1 t2 t,
red t1 t2 ->
red (TApp t t1) (TApp t t2).
(* ---------------------------------------------------------------------------- *)
(* The syntax of System F types. *)
Inductive ty :=
| TyVar: nat -> ty
| TyArrow: ty -> ty -> ty
| TyForall: ty -> ty.
(* ---------------------------------------------------------------------------- *)
(* The binding structure of types. *)
Instance Var_ty : Var ty := {
var := TyVar (* avoid eta-expansion *)
}.
Fixpoint traverse_ty (f : nat -> nat -> ty) l T :=
match T with
| TyVar x =>
f l x
| TyArrow T1 T2 =>
TyArrow (traverse_ty f l T1) (traverse_ty f l T2)
| TyForall T =>
TyForall (traverse_ty f (1 + l) T)
end.
Instance Traverse_ty : Traverse ty ty := {
traverse := traverse_ty
}.
Instance TraverseVarInjective_ty : @TraverseVarInjective ty _ ty _.
Proof.
constructor. prove_traverse_var_injective.
Qed.
Instance TraverseFunctorial_ty : @TraverseFunctorial ty _ ty _.
Proof.
constructor. prove_traverse_functorial.
Qed.
Instance TraverseRelative_ty : @TraverseRelative ty ty _.
Proof.
constructor. prove_traverse_relative.
Qed.
Instance TraverseIdentifiesVar_ty : @TraverseIdentifiesVar ty _ _.
Proof.
constructor. prove_traverse_identifies_var.
Qed.
Instance TraverseVarIsIdentity_ty : @TraverseVarIsIdentity ty _ ty _.
Proof.
constructor. prove_traverse_var_is_identity.
Qed.
(* ---------------------------------------------------------------------------- *)
(* The tactic [introq] introduces all of the universal quantifiers that appear
at the head of the goal. *)
Ltac introq :=
match goal with
| |- ?P -> ?Q =>
idtac
| |- forall _, _ =>
intro; introq
| |- _ =>
idtac
end.
(* ---------------------------------------------------------------------------- *)
(* The typing judgement of System F. *)
(* The judgement is indexed by the height of the type derivation. Only the
non-syntax-directed destruction rules found at the root count towards the
height. *)
Inductive j : nat -> env ty -> term -> ty -> Prop :=
| JVar:
forall n E x T,
lookup x E = Some T ->
j n E (TVar x) T
| JAbs:
forall m n E t T1 T2,
j m (insert 0 T1 E) t T2 ->
j n E (TAbs t) (TyArrow T1 T2)
| JApp:
forall n m1 m2 E t1 t2 T1 T2,
j m1 E t1 (TyArrow T1 T2) ->
j m2 E t2 T1 ->
j n E (TApp t1 t2) T2
| JTyAbs:
forall n E t T,
j n (map (shift 0) E) t T ->
j n E t (TyForall T)
| JTyApp:
forall n m E t T U U',
j m E t (TyForall T) ->
m < n ->
(* an explicit equality facilitates the use of this axiom by [eauto] *)
subst U 0 T = U' ->
j n E t U'.
Hint Constructors j : j.
(* ---------------------------------------------------------------------------- *)
(* Monotonicity of indices. *)
Lemma j_index_monotonic:
forall n E t T,
j n E t T ->
forall m,
m >= n ->
j m E t T.
Proof.
induction 1; eauto with j lia.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Type preservation. *)
Lemma term_weakening:
forall n E t T,
j n E t T ->
forall x U E',
insert x U E = E' ->
j n E' (shift x t) T.
Proof.
induction 1; intros; subst; simpl_lift_goal; econstructor;
eauto with lookup_insert insert_insert map_insert.
Qed.
Lemma type_weakening:
forall n E t T,
j n E t T ->
forall x E' T',
map (shift x) E = E' ->
shift x T = T' ->
j n E' t T'.
Proof.
induction 1; intros; subst; simpl_lift_goal;
econstructor;
eauto using lookup_map_some, map_map_exchange
with simpl_lift_goal lift_lift lift_subst map_insert.
Qed.
Lemma term_substitution:
forall n E2 t2 T2,
j n E2 t2 T2 ->
forall x T1 E,
E2 = insert x T1 E ->
forall m t1,
(* The derivation that is plugged in is usually canonical, i.e.,
[m] is zero, but we do not require this. *)
j m E t1 T1 ->
forall k,
(* In the worst case, the height of the new derivation is the sum
of the heights of the original derivations, due to the way the
derivations are plugged in at variables. *)
k >= m + n ->
j k E (subst t1 x t2) T2.
Proof.
induction 1; intros; subst; simpl_subst_goal;
try solve [
econstructor;
eauto using term_weakening, type_weakening with insert_insert map_insert lia
].
(* JVar. *)
unfold subst_idx. dblib_by_cases; lookup_insert_all;
eauto using j_index_monotonic with j lia.
Qed.
Lemma type_substitution:
forall n E t T,
j n E t T ->
forall U x E' T',
map (subst U x) E = E' ->
subst U x T = T' ->
j n E' t T'.
Proof.
induction 1; intros; subst; simpl_subst_goal;
econstructor;
eauto using lookup_map_some, map_map_exchange
with simpl_subst_goal lift_subst subst_subst map_insert.
Qed.
Lemma inversion_JAbs:
forall E t T1 T2,
j 0 E (TAbs t) (TyArrow T1 T2) ->
exists m,
j m (insert 0 T1 E) t T2.
Proof.
introq. intro h. dependent destruction h; try solve [ lia ].
(* JAbs *)
eexists. eassumption.
Qed.
Lemma inversion_JTyAbs:
forall E t T,
j 0 E (TAbs t) (TyForall T) ->
(* We require a lambda-abstraction, so as to eliminate the cases where
we have a variable or an application, which we cannot deal with. *)
j 0 (map (shift 0) E) (TAbs t) T.
Proof.
introq. intro h. dependent destruction h; try solve [ lia ].
(* JTyAbs *)
assumption.
Qed.
(* The following lemma looks like an inversion of [JTyAbs], but it
is not truly one, because it is proved by applying weakening and
[JTyApp], hence increasing the height of the derivation by one. *)
Goal (* phony_inversion_JTyAbs: *)
forall n E t T,
j n E t (TyForall T) ->
j (S n) (map (shift 0) E) t T.
Proof.
intros.
generalize (pun_2 T 0). simpl. intro h. rewrite <- h. clear h.
eapply JTyApp; [ | eauto | eauto ].
eapply type_weakening; [ eauto | eauto | ].
simpl_lift_goal. eauto.
Qed.
Lemma canonicalization:
forall n E t T,
j n E (TAbs t) T ->
j 0 E (TAbs t) T.
Proof.
(* Well-founded induction on [n]. *)
intro n. pattern n. apply (well_founded_ind lt_wf). clear n. intros n ih.
(* Analysis of the typing judgement. Inner structural induction,
in order to go through [JTyAbs], which does not cause a decrease
in [n]. *)
introq. intro h. dependent induction h; eauto with j.
(* JTyApp *)
(* This is the reduction of a type-level beta-redex. *)
eapply type_substitution; [ | | eauto ].
eapply inversion_JTyAbs. eauto.
eapply map_map_vanish. apply subst_lift.
Qed.
Lemma type_preservation:
forall m E t1 T,
j m E t1 T ->
forall t2,
red t1 t2 ->
exists n,
j n E t2 T.
(* A local tactic to recognize and apply the induction hypothesis. *)
Ltac tp_ih :=
match goal with ih: forall _, red _ _ -> _, hr: red _ _ |- _ =>
generalize (ih _ hr); intros [ ? ? ]
end.
Proof.
(* By induction on the type derivation. *)
induction 1; intros ? hred.
(* JVar *)
dependent destruction hred.
(* JAbs *)
dependent destruction hred.
tp_ih. eauto using (JAbs 0).
(* JApp *)
dependent destruction hred.
(* Sub-case: beta-reduction. *)
match goal with h: j _ _ (TAbs _) (TyArrow _ _) |- _ =>
generalize (inversion_JAbs (canonicalization h)); intros [ ? ? ]
end.
solve [ eauto using term_substitution ].
(* Sub-cases: reduction under a context. *)
tp_ih. eauto using (JApp 0).
tp_ih. eauto using (JApp 0).
(* JTyAbs *)
tp_ih. eauto with j.
(* JTyApp *)
tp_ih. eauto with j.
Qed.