-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDemoExplicitSystemF.v
276 lines (233 loc) · 6.6 KB
/
DemoExplicitSystemF.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
Set Implicit Arguments.
Require Export Coq.Program.Equality.
Require Import Dblib.DblibTactics.
Require Import Dblib.DeBruijn.
Require Import Dblib.Environments.
(* ---------------------------------------------------------------------------- *)
(* The syntax of terms. *)
(* We set things up so that terms do not refer to types. Thus, term variables
appear in terms, and type variables appear in types. This makes things much
simpler as compared to a setup where type variables appear in types and in
terms. *)
Inductive term :=
| TVar: nat -> term
| TAbs: term -> term
| TApp: term -> term -> term
| TTyAbs: term -> term
| TTyApp: term -> term.
(* ---------------------------------------------------------------------------- *)
(* The binding structure of terms. *)
Instance Var_term : Var term := {
var := TVar (* avoid eta-expansion *)
}.
Fixpoint traverse_term (f : nat -> nat -> term) l t :=
match t with
| TVar x =>
f l x
| TAbs t =>
TAbs (traverse_term f (1 + l) t)
| TApp t1 t2 =>
TApp (traverse_term f l t1) (traverse_term f l t2)
| TTyAbs t =>
TTyAbs (traverse_term f l t)
| TTyApp t =>
TTyApp (traverse_term f l t)
end.
Instance Traverse_term : Traverse term term := {
traverse := traverse_term
}.
Instance TraverseVarInjective_term : @TraverseVarInjective term _ term _.
Proof.
constructor. prove_traverse_var_injective.
Qed.
Instance TraverseFunctorial_term : @TraverseFunctorial term _ term _.
Proof.
constructor. prove_traverse_functorial.
Qed.
Instance TraverseRelative_term : @TraverseRelative term term _.
Proof.
constructor. prove_traverse_relative.
Qed.
Instance TraverseIdentifiesVar_term : @TraverseIdentifiesVar term _ _.
Proof.
constructor. prove_traverse_identifies_var.
Qed.
Instance TraverseVarIsIdentity_term : @TraverseVarIsIdentity term _ term _.
Proof.
constructor. prove_traverse_var_is_identity.
Qed.
(* ---------------------------------------------------------------------------- *)
(* Reduction semantics. *)
Inductive red : term -> term -> Prop :=
| RedBeta:
forall t1 t2,
red (TApp (TAbs t1) t2)
(subst t2 0 t1)
| RedTyBeta:
forall t,
red (TTyApp (TTyAbs t)) t
| RedContextTAbs:
forall t1 t2,
red t1 t2 ->
red (TAbs t1) (TAbs t2)
| RedContextTAppLeft:
forall t1 t2 t,
red t1 t2 ->
red (TApp t1 t) (TApp t2 t)
| RedContextTAppRight:
forall t1 t2 t,
red t1 t2 ->
red (TApp t t1) (TApp t t2)
| RedContextTTyAbs:
forall t1 t2,
red t1 t2 ->
red (TTyAbs t1) (TTyAbs t2)
| RedContextTTyApp:
forall t1 t2,
red t1 t2 ->
red (TTyApp t1) (TTyApp t2).
(* ---------------------------------------------------------------------------- *)
(* The syntax of System F types. *)
Inductive ty :=
| TyVar: nat -> ty
| TyArrow: ty -> ty -> ty
| TyForall: ty -> ty.
(* ---------------------------------------------------------------------------- *)
(* The binding structure of types. *)
Instance Var_ty : Var ty := {
var := TyVar (* avoid eta-expansion *)
}.
Fixpoint traverse_ty (f : nat -> nat -> ty) l T :=
match T with
| TyVar x =>
f l x
| TyArrow T1 T2 =>
TyArrow (traverse_ty f l T1) (traverse_ty f l T2)
| TyForall T =>
TyForall (traverse_ty f (1 + l) T)
end.
Instance Traverse_ty : Traverse ty ty := {
traverse := traverse_ty
}.
Instance TraverseVarInjective_ty : @TraverseVarInjective ty _ ty _.
Proof.
constructor. prove_traverse_var_injective.
Qed.
Instance TraverseFunctorial_ty : @TraverseFunctorial ty _ ty _.
Proof.
constructor. prove_traverse_functorial.
Qed.
Instance TraverseRelative_ty : @TraverseRelative ty ty _.
Proof.
constructor. prove_traverse_relative.
Qed.
Instance TraverseIdentifiesVar_ty : @TraverseIdentifiesVar ty _ _.
Proof.
constructor. prove_traverse_identifies_var.
Qed.
Instance TraverseVarIsIdentity_ty : @TraverseVarIsIdentity ty _ ty _.
Proof.
constructor. prove_traverse_var_is_identity.
Qed.
(* ---------------------------------------------------------------------------- *)
(* The typing judgement of System F. *)
Inductive j : env ty -> term -> ty -> Prop :=
| JVar:
forall E x T,
lookup x E = Some T ->
j E (TVar x) T
| JAbs:
forall E t T1 T2,
j (insert 0 T1 E) t T2 ->
j E (TAbs t) (TyArrow T1 T2)
| JApp:
forall E t1 t2 T1 T2,
j E t1 (TyArrow T1 T2) ->
j E t2 T1 ->
j E (TApp t1 t2) T2
| JTyAbs:
forall E t T,
j (map (shift 0) E) t T ->
j E (TTyAbs t) (TyForall T)
| JTyApp:
forall E t T U U',
j E t (TyForall T) ->
(* an explicit equality facilitates the use of this axiom by [eauto] *)
subst U 0 T = U' ->
j E (TTyApp t) U'.
Hint Constructors j : j.
(* ---------------------------------------------------------------------------- *)
(* Type preservation. *)
Lemma term_weakening:
forall E t T,
j E t T ->
forall x U E',
insert x U E = E' ->
j E' (shift x t) T.
Proof.
induction 1; intros; subst; simpl_lift_goal; econstructor;
eauto with lookup_insert insert_insert map_insert.
Qed.
Lemma type_weakening:
forall E t T,
j E t T ->
forall x E' T',
map (shift x) E = E' ->
shift x T = T' ->
j E' t T'.
Proof.
induction 1; intros; subst; simpl_lift_goal;
econstructor;
eauto using lookup_map_some, map_map_exchange
with simpl_lift_goal lift_lift lift_subst map_insert.
Qed.
Lemma term_substitution:
forall E x t2 T1 T2,
j (insert x T1 E) t2 T2 ->
forall t1,
j E t1 T1 ->
j E (subst t1 x t2) T2.
Proof.
do 5 intro; intro h; dependent induction h; intros; simpl_subst_goal;
try (
econstructor;
eauto using term_weakening, type_weakening with insert_insert map_insert
).
(* Case TVar. *)
unfold subst_idx. dblib_by_cases; lookup_insert_all; eauto with j.
Qed.
Lemma type_substitution:
forall E t T,
j E t T ->
forall U x E' T',
map (subst U x) E = E' ->
subst U x T = T' ->
j E' t T'.
Proof.
induction 1; intros; subst; simpl_subst_goal;
econstructor;
eauto using lookup_map_some, map_map_exchange
with simpl_subst_goal lift_subst subst_subst map_insert.
Qed.
Ltac j_inversion :=
match goal with
| h: j _ (TAbs _) _ |- _ =>
inversion h; clear h; subst
| h: j _ (TTyAbs _) _ |- _ =>
inversion h; clear h; subst
end.
Lemma type_preservation:
forall t1 t2,
red t1 t2 ->
forall E T,
j E t1 T ->
j E t2 T.
Proof.
induction 1; intros ? ? h; dependent destruction h; subst; eauto with j.
(* Case RedBeta. *)
j_inversion.
eauto using term_substitution.
(* Case RedTyBeta. *)
j_inversion.
eauto using type_substitution, map_map_vanish with subst_lift.
Qed.