-
Notifications
You must be signed in to change notification settings - Fork 1
/
RigidMotionsParameterSpaceDecompositionRecursive.mpl
executable file
·300 lines (281 loc) · 11.9 KB
/
RigidMotionsParameterSpaceDecompositionRecursive.mpl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# File: RigidMotionsParameterSpaceDecompostionRecursive.mpl
#
# Description:
# This file contains functions used to obtain an arrangement 6 dimensional parameter space of 3D
# digitized rigid motions.
# This code has been written for research propose and its aim is to calculate a particular
# arrangement of quadrics. Therefore, it can or it cannot be useful in study of generic
# arrangements. The final output are sample points of full dimensional open cells.
#
# The code was written in relation with the paper: Kacper Pluta, Guillaume Moroz, Yukiko
# Kenmochi, Pascal Romon, Quadric arrangement in classifying rigid motions of a 3D digital image,
# 2016, https://hal.archives-ouvertes.fr/hal-01334257 referred late on as [Quadrics:2016].
#
# Author:
# Kacper Pluta - kacper.pluta@esiee.fr
# Laboratoire d'Informatique Gaspard-Monge - LIGM, A3SI, France
#
# Date:
# 12/24/2016
#
# License:
# Simplified BSD License
#
# Copyright (c) 2016, Kacper Pluta
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL Kacper Pluta BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#
RigidMotionsParameterSpaceDecompostionRecursive := module()
option package;
(*Threshold which controls when to synchronize databases.*)
local RECORDS_TO_SYNCH := 1000;
uses RigidMotionsParameterSpaceCommon;
local ComputeEventsAType2D, ComputeEventsBType2D, ComputeEventsAType1D,
ComputeAsymptoticAAEvents2D, ComputeEventsAlgebraicNumbers2D, ComputeSamplePoints2D;
export IsAsymptotic2D, LaunchComputeSamplePoints2D;
# Procedure: ComputeEventsAType2D
# Compute events such that a sweep line is tangent to a conic with respect to the first provided
# variable.
#
# Parameters:
# Q2D2 - a set of conics
# grid - if true then computations are performed in the parallel computation framework
# called Grid (see Maple documentation)
# vars2D - a list of the variables
#
# Output:
# list of couples: univariate polynomial and index of the generating conic: [poly, [index]]
#
# Comment/Limitations:
# - Univariate polynomials are expressed in the first variable.
ComputeEventsAType2D := proc(Q2D2, grid::boolean, vars2D::list)
uses ArrayTools;
local result := Array([]), s;
if nops(vars2D) < 2 then
error "Only systems in at least two variables are supported. The variables are: %1.", vars2D;
fi:
s := proc(i::integer, vars2D::list)
local sys, univ, sol:
local q := Q2D2[i];
sys := [q, diff( q, vars2D[2] )];
univ := UnivariatePolynomial(sys, vars2D):
return SerializeEvents(GenerateEvents(univ, [i]));
end proc;
if grid then
map[inplace](proc(x) Extend(result, x, inplace=true) end proc, [Grid:-Seq( s( i, vars2D ),
i=1..nops( Q2D2 ) )]);
else
map[inplace](proc(x) Extend(result, x, inplace=true) end proc, [seq( s( i, vars2D ),
i=1..nops( Q2D2 ) )]);
fi;
return ReconstructEvents(result);
end proc:
# Procedure: ComputeEventsBType2D
# Compute events such that two conics intersects in a point.
#
# Parameters:
# Q2D2 - a set of conics
# grid - if true then computations are performed in the parallel computation framework
# called Grid (see Maple documentation)
# vars2D - a list of the variables
#
# Output:
# list of couples: univariate polynomial and indices of the generating conics: [poly,
# [index1,index2]]
#
# Comment/Limitations:
# - Univariate polynomials are expressed in the first variable.
ComputeEventsBType2D := proc(Q2D2, grid::boolean, vars2D::list)
uses ArrayTools;
local result := Array([]), s:
s := proc (i, j, vars2D::list)
local p, sol, univ, sys;
sys := [Q2D2[i], Q2D2[j]];
univ := UnivariatePolynomial(sys, vars2D);
return SerializeEvents(GenerateEvents(univ, [i, j]));
end proc;
if grid then
map[inplace](proc(x) Extend(result, x, inplace=true) end proc, [Grid:-Seq( seq( s(i, j, vars2D),
j=i+1..nops( Q2D2 ) ), i=1..nops( Q2D2 ) )]);
else
map[inplace](proc(x) Extend(result, x, inplace=true) end proc, [seq( seq( s(i, j, vars2D),
j=i+1..nops( Q2D2 ) ), i=1..nops( Q2D2 ) )]);
fi;
return ReconstructEvents(result);
end proc:
# Procedure: IsAsymptotic2D
# Checks if a curve is an asymptote.
#
# Parameters:
# p - a curve given as a polynomial
# var - variable to be reduced
#
# Output:
# Monomial such that there exists a line tangent to the curve at infinity represented in a
# variable different than 'var' or a constant.
IsAsymptotic2D := proc(p::polynom, var)
return lcoeff(p, var);
end proc:
# Procedure: ComputeAsymptoticAAEvents2D
# Compute real algebraic numbers which corresponds to asymptotic cases given by one curve.
#
# Parameters:
# Q2D2 - a set of conics
# vars2D - a list of the variables
#
# Output: Real
# A list of Events (see EventType).
ComputeAsymptoticAAEvents2D := proc(Q2D2, vars2D::list)
uses ArrayTools;
local result := Array([]), s;
s:=proc(i::integer, vars2D::list)
local asy;
asy := RigidMotionsParameterSpaceDecompostionRecursive:-IsAsymptotic2D(Q2D2[i], vars2D[-1]);
return GenerateEvents(asy, [i]);
end proc:
map[inplace](proc(x) Extend(result, x, inplace=true) end proc, [seq(s(i, vars2D),
i=1..nops(Q2D2))]);
return result;
end:
# Procedure: ComputeEventsAlgebraicNumbers2D
# Compute and sort events
#
# Parameters:
# Q2D2 - set of conics
# grid - if true then computations are performed in the parallel computation framework
# called Grid (see Maple documentation)
# vars2D - a list of the variables
#
# Output:
# Sorted Array of real algebraic numbers
ComputeEventsAlgebraicNumbers2D := proc(Q2D2, grid::boolean, vars2D::list)
uses ArrayTools;
local events2D := Array([]);
Extend(events2D, ComputeEventsAType2D(Q2D2, grid, vars2D), inplace=true);
Extend(events2D, ComputeEventsBType2D(Q2D2, grid, vars2D), inplace=true);
Extend(events2D, ComputeAsymptoticAAEvents2D(Q2D2, vars2D), inplace=true);
return AlgebraicSort(events2D);
end proc:
# Procedure: ComputeEventsAType1D
# Compute and sort events as algebraic numbers
#
# Parameters:
# Q2D2 - a list of conics
#
# Output:
# Sorted list of real algebraic numbers without repetitions.
ComputeEventsAType1D := proc(Q2D2::list)
local q, factored, sqrFree, rootsF, rf, numbers := Array([]);
for q in Q2D2 do
if RootFinding:-HasRealRoots(q) then
factored := factors( q )[2,..,1];
for sqrFree in factored do
rootsF := RootFinding:-Isolate(sqrFree, output='interval');
for rf in rootsF do
ArrayTools:-Append(numbers, RealAlgebraicNumber(sqrFree, op(rf)[2][1],
op(rf)[2][2]));
od;
od;
fi;
od;
numbers := AlgebraicSort(numbers);
return ListTools:-MakeUnique(convert(numbers, list), 1, proc(a,b) evalb(Compare(a,b) = 0) end proc);
end proc:
# Procedure: ComputeSamplePoints2D
# Computes sample points for rotational part of rigid motions
#
# Parameters:
# Q2D - a list of conics
# events2D - each element contains a list of algebraically unique events
# first - integer value which indicates the first event to proceed.
# last - integer value which indicates the last event to proceed.
# vars2D - list of variables in which conics are expressed
# db - an instance of the class ComputationRegister
#
# Output:
# It populates a database, given by databasePath, with sample points.
ComputeSamplePoints2D := proc(Q2D, events2D::Array, first::integer, last::integer,
vars2D::list, amid::rational, db::ComputationRegister)
local i::integer, j::integer, x::list, midpoint::rational, sys::list, records := 0;
local disjointEvent::list, oneD::list, oneDNeg::list, ranumI, ranumJ;
if first < 0 or last < 0 or last < first or upperbound(events2D) <= last then
error "Bounds of the array range are incorrect.":
end if:
for i from first to last do
sys := Q2D[GetQuadrics(events2D[i])];
ranumI := GetRealAlgebraicNumber(events2D[i]);
ranumJ := GetRealAlgebraicNumber(events2D[i+1]);
disjointEvent:=DisjointRanges(ranumI, ranumJ);
midpoint := (GetInterval(disjointEvent[1])[2] + GetInterval(disjointEvent[2])[1])/2:
# never call eval with sets!
sys := eval(sys, vars2D[1] = midpoint);
oneD := ComputeEventsAType1D(sys);
oneD := select(proc(x) return evalb(GetInterval(x)[2] >= 0); end proc, oneD);
if upperbound(oneD) > 0 then
for j from 1 to upperbound(oneD) - 1 do
disjointEvent := DisjointRanges(oneD[j],oneD[j+1]);
InsertSamplePoint(db, [amid, midpoint, (GetInterval(disjointEvent[1])[2] +
GetInterval(disjointEvent[2])[1])/2]);
records := records + 1;
if records mod RECORDS_TO_SYNCH = 0 then
SynchronizeSamplePoints(db);
fi;
od:
InsertSamplePoint(db, [amid, midpoint, GetInterval(oneD[-1])[2] + 1/2]);
records := records + 1;
if records mod RECORDS_TO_SYNCH = 0 then
SynchronizeSamplePoints(db);
fi;
fi;
od:
end proc:
# Procedure: ComputeSamplePoints2D
# Computes sample points for rotational part of rigid motions using the grid framework
#
#
# Parameters:
# s - a list of conics
# midpoint - the first dimensional midpoint obtained from the 3D decomposition
# nodes - number of nodes used in the parallel computations
# grid - a control variable for parallel computations. If true and additional conditions on
# the size of the problem are fulfilled the problem is solved in the grid framework
# variables - list of variables in which the problem is expressed
# db - an instance of ComputationRegister which provides interface to the database
# Output:
# It populates a database with sample points.
LaunchComputeSamplePoints2D := proc (s::list, midpoint::rational, nodes::integer,
grid::boolean, variables::list, db::ComputationRegister)
local events2D, Q2D := ListTools:-MakeUnique([op(variables), op(s)]);
if grid and nops(s) > 20 then
events2D := ComputeEventsAlgebraicNumbers2D(Q2D, true, variables);
else
events2D := ComputeEventsAlgebraicNumbers2D(Q2D, false, variables);
fi;
events2D := remove[flatten](proc(x) evalb(GetInterval(GetRealAlgebraicNumber(x))[2] < 0) end proc,
events2D);
if upperbound(events2D) = 0 then
return NULL;
fi;
events2D := ReduceEvents(events2D);
AdjustEvents(events2D, upperbound(Q2D), variables);
ComputeSamplePoints2D(Q2D, events2D, 1, upperbound(events2D) - 1, variables, midpoint, db);
end proc:
end module;