Energy Constant | Value |
---|---|
- See here for an interactive option.
Unit | |||||
---|---|---|---|---|---|
Description | Equations |
---|---|
Energy quantization | |
Average energy of an oscillating dipole | |
Spectral radiation density of blackbody (Planck) | |
Spectral radiation density of blackbody (classical) |
Description | Equations |
---|---|
Energy of light | |
Photoelectric effect Kinetic energy of ejected photoelectron |
|
de Broglie relation | |
Kinetic energy |
Description | Equations |
---|---|
Hydrogen emission lines |
|
Bohr's radius | |
Energy level in Bohr's model | |
Emission of hydrogen atom |
Description | Equations |
---|---|
Classical nondispersive wave equation | |
Wave number | |
Frequency | |
Angular frequency | |
Wave speed | |
Euler's formula | |
Solution of wave equation | $\begin{aligned}\Psi(x, t) &= A \sin(kx - \omega t + \phi) \\ &= \mathrm{Re}(Ae^{i(kx-\omega t + \phi')})\end{aligned}$ |
Interfering traveling waves give standing wave | $\begin{aligned}\Psi(x, t) &= A[\sin(kx - \omega t) + \sin(kx + \omega t)] \\ &= 2A \sin(kx)\cos(\omega t) \\ &= \psi(x)\cos(\omega t) \end{aligned}$ |
Time-independent Schrodinger equation | |
Time-dependent Schrodinger equation | |
Stationary states are standing waves | |
Normalization | |
Orthogonality | |
Use quantum mechanics when ... | 1. 2. |
- The state of a quantum-mechanical particle is completely specified by a wave function
$\Psi(x, t)$ . The probability that the particle will be found at time$t_0$ in a spatial interval of width$dx$ centered at$x_0$ is given by$\Psi^*(x_0, t_0)\Psi(x_0, t_0) dx$ - For every measurable property of a system, there exists a corresponding operator.
- In any single measurement of the observable that corresponds to the operator
$\hat{A}$ , the only values that will ever be measured are the eigenvalues of that operator. - If the system is in a state described by the wave function
$\Psi(x, t)$ , and the value of the observatle$a$ is measured once on each of many identically prepared systems, the average value (expectation value) of all of the measurements is given by $$ \langle a \rangle = \dfrac{\displaystyle\int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi \ dx}{\displaystyle\int_{-\infty}^{\infty} \Psi^*\Psi \ dx} $$ - The evolution in time of a quantum-mechanical system is governed by the time-dependent Schrödinger equation $$ \hat{H}\Psi(x, t) = i\hbar\dfrac{\partial\Psi(x, t)}{\partial t} $$
Description | 1D | 3D |
---|---|---|
Position | ||
Linear momentum | ||
Kinetic energy | ||
Potential energy | ||
Total energy Hamiltonian |
Description | Equations |
---|---|
Time dependent Schrodinger equation | |
Time independent Schrodinger equation | |
Stationary state wave function | |
Time component of wave function | |
Probability of finding particle in an interval | |
General solution as linear combination of stationary states | |
Expansion coefficients | |
Normalization |
Description | Equations |
---|---|
Time independent Schrodinger equation | |
Wave function |
|
Energy eigenvalues |
Description | Equations |
---|---|
Time independent Schrodinger equation | |
Wave function |
$\begin{aligned}&\psi_{n_x, n_y, n_z}(\mathbf{x}) \\ =& \psi_{n_x}(x)\psi_{n_y}(y)\psi_{n_z}(z) \\ =& \sqrt{\dfrac{2}{L_x}}\sqrt{\dfrac{2}{L_y}}\sqrt{\dfrac{2}{L_z}} \sin\left(\dfrac{n_x \pi x}{L_x}\right)\sin\left(\dfrac{n_y \pi y}{L_y}\right)\sin\left(\dfrac{n_z \pi z}{L_z}\right)\end{aligned}$ |
Energy eigenvalues |
Description | Equations |
---|---|
Potential | $V(x) = \begin{cases}0 & x\in [0, L] \\ V_0 & \mathrm{elsewhere}\end{cases}$ |
Reflection probability | |
Transmission probability |
Description | Equations |
---|---|
Commutator | |
Condition of commutation | |
Standard deviation (uncertainty) | $\begin{aligned}\sigma_A &= \sqrt{\langle (A - \langle A \rangle^2 \rangle)} \\ &= \sqrt{\langle A^2 \rangle - \langle A \rangle^2}\end{aligned}$ |
Heisenberg uncertainty principle (general) | |
Heisenberg uncertainty principle (position-momentum) |
Description | Equations |
---|---|
Vibrational Schrodinger equation | |
Wave function | |
Harmonic approximation | |
Spring constant | |
Vibrational Schrodinger equation | |
Wave function |
|
Hermite polynomials | |
Constant | |
Energy eigenvalue |
|
Transition dipole moment | |
Vibrational selection rule |
Description | Equations |
---|---|
Angular momentum | |
Linear velocity | |
Moment of inertia | |
Rotational kinetic energy |
Description | Equations |
---|---|
Angular momentum operator | |
z-component of angular momentum operator | |
Magnitude of angular momentum operator | |
Components of |
|
Components of |
Description | Equations |
---|---|
Rotational Schrodinger equation | |
Spherical harmonics | |
Legendre polynomial | |
Energy eigenvalues |
|
Angular momentum eigenvalues |
|
z-component eigenvalues |
|
Transition dipole moment | |
Rotational selection rule |
Description | Equations |
---|---|
Hydrogen atom Schrodinger equation | |
Effective potential | |
Wave function |
|
Energy eigenvalues |
|
Rydberg's constant | |
Bohr's radius | |
Radial probability distribution |
Description | Equations |
---|---|
Helium Schrodinger equation | |
Orbital approximation | |
Hartree orbital equations |
Description | Equations |
---|---|
Components of |
|
Components of |
|
Eigenvalue of |
|
Eigenvalue of |
Description | Equations |
---|---|
Electron spin | |
Spin up function | $\alpha(m_s) = \begin{cases} 1 & m_s = +\frac{1}{2} \\ 0 & m_s = -\frac{1}{2} \end{cases}$ |
Spin down function | $\beta(m_s) = \begin{cases} 0 & m_s = +\frac{1}{2} \\ 1 & m_s = -\frac{1}{2} \end{cases}$ |
|
|
|
|
|
|
Normalization | $\sum\limits_{m_s} \alpha^\alpha = \sum\limits_{m_s} \beta^\beta = 1$ |
Orthogonality | $\sum\limits_{m_s} \alpha^\beta = \sum\limits_{m_s} \beta^\alpha = 0$ |
Description | Equations |
---|---|
Spin-spin permutation operator | |
Doing nothing | |
Symmetric eigenvalue | |
Anti-symmetric eigenvalue | |
Fermions (e.g. electron) |
|
Bosons | integer spin, symmetric |
Pauli exclusion principle | |
Slater determinant | $\Psi(\mathrm{x}_1, \mathrm{x}_2, \cdots, \mathrm{x}_N) = \dfrac{1}{\sqrt{N!}} \begin{vmatrix}\chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \end{vmatrix}$ |
Hartree-Fock orbital equations | $\left[ -\dfrac{\hbar^2\nabla^2}{2m} - \dfrac{Ze^2}{\vert\mathbf{x}\vert} \right] \phi_i(\mathbf{r}) + \displaystyle\sum_{j=1}^N \left[ \phi_i(\mathbf{r}) \int \dfrac{e^2 \phi^_j(\mathbf{r}) \phi_j(\mathbf{r})}{\vert\mathbf{x} - \mathbf{x}'\vert} d^3r' - \phi_j(\mathbf{r}) \int \dfrac{e^2 \phi^_j(\mathbf{r}) \phi_i(\mathbf{r})}{\vert\mathbf{x} - \mathbf{x}'\vert} d^3r' \right] = \varepsilon_i \phi_i(\mathbf{r})$ |
Molecular orbital by linear combination of atomic orbitals (MO-LCAO) | |
Variational principle |