Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for torsion of a rectangular section #8

Open
carlos-adir opened this issue Dec 11, 2023 · 0 comments
Open

Add test for torsion of a rectangular section #8

carlos-adir opened this issue Dec 11, 2023 · 0 comments
Labels
enhancement New feature or request

Comments

@carlos-adir
Copy link
Contributor

Let $a$ and $b$ be the width and the height of a section.

The Warping function can be computed as

$$ \omega(x, \ y) = xy - \sum_{n=0}^{\infty} \alpha_{n} \cdot \sin \left(k_{n} x\right) \cdot \sinh\left(k_n y\right) $$

With

$$\alpha_n = \dfrac{8a^2\left(-1\right)^{n}}{\pi^3\left(2n+1\right)^3 \cdot \cosh \left(\frac{1}{2}k_{n} b\right)}$$

$$k_n = \dfrac{\left(2n+1\right)\pi}{a}$$

Then, the torsion constant $J$ can be computed as

$$J = I_{xx}+I_{yy} - \int_{\Omega} \left(y \dfrac{\partial \omega}{\partial x} - x \dfrac{\partial \omega}{\partial y}\right) \ dx \ dy$$

$$J = \dfrac{a^3 b}{3} - \dfrac{64a^4}{\pi^5} \sum_{n=0}^{\infty} \dfrac{\tanh\left(\frac{1}{2}k_n \cdot b\right)}{ \left(2n+1\right)^5}$$

The stress field can be computed as

$$\sigma_{xz}(x, \ y) = \dfrac{M_z}{J}\left(\dfrac{\partial \omega}{\partial x} - y\right);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sigma_{yz}(x, \ y) = \dfrac{M_z}{J}\left(\dfrac{\partial \omega}{\partial y} + x\right)$$

$$\sigma_{xz}(x, \ y) = \dfrac{M_z}{J} \left( -\sum_{n=0}^{\infty} \alpha_n \cdot k_n \cdot \cos\left(k_n \cdot x \right) \sinh \left(k_n \cdot y\right)\right)$$

$$\sigma_{yz}(x, \ y) = \dfrac{M_z}{J} \left( 2x - \sum_{n=0}^{\infty} \alpha_n \cdot k_n \cdot \sin \left(k_n \cdot x \right) \cosh \left(k_n \cdot y\right)\right)$$

Reference:

@carlos-adir carlos-adir added the enhancement New feature or request label Dec 11, 2023
@carlos-adir carlos-adir added this to the v0.4.0 - Torsion milestone Dec 11, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

1 participant