-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl-tune.py
executable file
·238 lines (205 loc) · 8.46 KB
/
dl-tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python3
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import method.io as io
import method.nn as nn
import numpy as np
import argparse
import kerastuner as kt
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
"""
Treat this as a multi-label classification problem, using a cost-sensitive
neural network for imbalanced classification.
Intro to MLC:
https://machinelearningmastery.com/multi-label-classification-with-deep-learning/
Cost-sensitive
https://machinelearningmastery.com/cost-sensitive-neural-network-for-imbalanced-classification/
Imbalanced:
https://machinelearningmastery.com/what-is-imbalanced-classification/
https://www.analyticsvidhya.com/blog/2017/03/imbalanced-data-classification/
https://towardsdatascience.com/5-smote-techniques-for-oversampling-your-imbalance-data-b8155bdbe2b5
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
Tuning:
https://www.tensorflow.org/tutorials/keras/keras_tuner
https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html
"""
np.warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser('AE-multi-label classifier model selection')
parser.add_argument('--seed', type=int, default=0,
help='Seeding of the run')
parser.add_argument('-v', '--verbose', action='store_true',
help='Printing tensorflow output to stdout')
parser.add_argument('-p', '--plot', action='store_true',
help='Making and showing some plots')
required = parser.add_argument_group('required arguments')
required.add_argument('-g', '--gene', type=str, required=True,
choices=['TP53', 'MLH1', 'MSH2'],
help='Gene for analysis')
args = parser.parse_args()
# Set seed
np.random.seed(args.seed)
nn.tf.random.set_seed(args.seed)
print('Seed:', args.seed)
print('Gene:', args.gene)
# Training params
epochs = 100 # NOTE: epochs and batch_size are used by both AE and MLC
batch_size = 512
weights = {0:10, 1:1}
lr = 0.001
print('\nTraining:')
print('epochs =', epochs)
print('batch_size =', batch_size)
print('weights = {0:%s, 1:%s}' % (weights[0], weights[1]))
print('lr =', lr)
print('\n')
# Make save directory
savedir = 'out/mlc-tune'
if not os.path.isdir(savedir):
os.makedirs(savedir)
# Load data and perform dimensionality reduction
x_train, l_train, m = io.load_training_rama('data/' + args.gene,
postfix='_30_40ns', extra=True)
l_train = np.asarray(list(l_train))
xtrs = x_train.shape
x_train = x_train.reshape(xtrs[0] * xtrs[1], xtrs[2])
# Transform data
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
# Make y as label * #MD frames
y_train = []
for l in l_train:
y_train += [l[0, 0]] * xtrs[1] # times #MD frames per variant
y_train = np.asarray(y_train)
# Model selection: grid search for n_pcs
n_pcs_list = [2, 3, 4, 5, 6, 10, 20, 50, 100]
for i_grid, n_pcs in enumerate(n_pcs_list):
#n_pcs = 10
#
#print('Parameters:')
#print('n_pcs =', n_pcs)
saveas = str(args.seed) + '-nlat' + str(n_pcs)
# Autoencoder
import method.autoencoder as autoencoder
autoencoder.tf.random.set_seed(args.seed)
encoder_units = [1000, 1000] # [xtrs[1] * 100, n_pcs * 100]
l1l2_ae = None
dropout_ae = 0.1
lag_ae = 1
encoder = autoencoder.Encoder(n_components=n_pcs,
units=encoder_units,
l1l2=l1l2_ae,
dropout=dropout_ae)
try:
# Load trained AE
encoder.load('%s/ae-%s' % (savedir, saveas))
except:
# Train AE
encoder.fit(x_train, lag=lag_ae, shape=xtrs, epochs=epochs,
batch_size=batch_size, verbose=args.verbose)
# Save trained AE
encoder.save('%s/ae-%s' % (savedir, saveas))
x_train_2 = encoder.transform(x_train, whiten=False)
# Transform data
scaler2 = StandardScaler()
scaler2.fit(x_train_2)
x_train_2 = scaler2.transform(x_train_2)
# Over sampling
over = SMOTE()
x_train_2, y_train_2 = over.fit_resample(x_train_2, y_train)
y_train_2 = np.asarray([[0, 1] if y[0] else [1, 0] for y in y_train_2])
if args.plot:
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import cm
b2 = np.array(y_train_2[:, 1], dtype=bool)
x_train_b2 = x_train_2[~b2].reshape(-1, n_pcs)
x_train_p2 = x_train_2[b2].reshape(-1, n_pcs)
skipp = 10
_, axes = plt.subplots(n_pcs, n_pcs, figsize=(20, 20))
for i in range(n_pcs):
for j in range(n_pcs):
if i == j:
axes[i, j].hist(x_train_p2[::, j], color='C1', alpha=0.4)
axes[i, j].hist(x_train_b2[::, j], color='C0', alpha=0.4)
elif i > j:
axes[i, j].scatter(x_train_p2[::skipp, j], x_train_p2[::skipp, i],
color='C1', alpha=0.4)
axes[i, j].scatter(x_train_b2[::skipp, j], x_train_b2[::skipp, i],
color='C0', alpha=0.4)
elif i < j:
# Top-right: no plot
axes[i, j].axis('off')
# Set tick labels
if i < n_pcs - 1:
# Only show x tick labels for the last row
axes[i, j].set_xticklabels([])
if j > 0:
# Only show y tick labels for the first column
axes[i, j].set_yticklabels([])
if i > 0:
axes[i, 0].set_ylabel('dim %s' % (i + 1))
else:
axes[i, 0].set_ylabel('Counts')
axes[-1, i].set_xlabel('dim %s' % (i + 1))
plt.suptitle('Train: Blue (SMOTE Benign), Red (Pathogenic)', fontsize=18)
plt.tight_layout()
plt.savefig(savedir + '/ae-reduction-smote-tune-' + saveas, dpi=200)
plt.close()
# Splitting training and validation data
x_tra, x_val, y_tra, y_val = train_test_split(
x_train_2[:, :n_pcs], y_train_2, test_size=0.3, random_state=args.seed, shuffle=True
)
# This gives about 0.5 pathogenic and 0.5 benign for training and validation
# Define a model
def build_model(hp):
n_neurons_hp = hp.Choice('n_neurons', [32, 128, 512, 1024])
n_hiddens_hp = hp.Choice('n_hiddens', [0, 1, 2, 3])
dropout_hp = hp.Choice('dropout', [0., 0.2, 0.4])
model = nn.build_dense_mlc_model(input_neurons=n_neurons_hp,
input_dim=n_pcs,
architecture=[n_neurons_hp] * n_hiddens_hp,
act_func="leaky_relu",
l1l2=None,
dropout=dropout_hp,
learning_rate=lr)
return model
tuner = kt.BayesianOptimization(
build_model,
objective=kt.Objective("val_fbeta_score", direction="max"),
max_trials=100,
directory=savedir,
project_name='tuner-' + saveas,
)
stop_early = EarlyStopping(monitor='val_loss', patience=5)
tuner.search(x_tra,
y_tra,
class_weight=weights,
epochs=epochs,
batch_size=batch_size,
#validation_split=0.3,
validation_data=(x_val, y_val),
callbacks=[stop_early],
verbose=args.verbose)
# Get the optimal hyperparameters
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
# Build the best model with full epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(x_tra,
y_tra,
class_weight=weights,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_val, y_val),
verbose=args.verbose)
print('Hyperparameter search completed for n_pcs =', n_pcs)
for h in ['n_neurons', 'n_hiddens', 'dropout']:
print(h, '=', best_hps.get(h))
print('Metrics:')
for m in ['accuracy', 'fbeta_score', 'val_accuracy', 'val_fbeta_score']:
print(m, '=', history.history[m][-1])
print('\n')