forked from pytorch/kineto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet50_profiler_api.py
52 lines (45 loc) · 1.67 KB
/
resnet50_profiler_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision
import torchvision.transforms as T
import torch.profiler
from torchvision import models
model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
model.cuda()
cudnn.benchmark = True
transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=4)
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
device = torch.device("cuda:0")
model.train()
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2),
on_trace_ready=torch.profiler.tensorboard_trace_handler('./result', worker_name='worker0'),
record_shapes=True,
profile_memory=True, # This will take 1 to 2 minutes. Setting it to False could greatly speedup.
with_stack=True
) as p:
for step, data in enumerate(trainloader, 0):
print("step:{}".format(step))
inputs, labels = data[0].to(device=device), data[1].to(device=device)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step + 1 >= 4:
break
p.step()