-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathResults_Spearman_correlation.py
337 lines (263 loc) · 23.8 KB
/
Results_Spearman_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
Copyright (C) 2020 Cognizant Digital Business, Evolutionary AI. All Rights Reserved.
Issued under the Academic Public License.
"""
from __future__ import absolute_import, division, print_function
import tensorflow as tf
from sklearn.metrics import mean_squared_error
from scipy import stats
import pickle
import os
import numpy as np
import time
# file for post-processing all the experimental results for Table 1 and Table S2
# Only run this file after generating all the experimental results
print(tf.__version__)
#change dataset_index to select which dataset to use (0-11)
dataset_index = 0
dataset_name_list = ["yacht","ENB_heating","ENB_cooling","airfoil_self_noise","concrete","winequality-red","winequality-white","CCPP","CASP","SuperConduct","slice_localization","MSD"]
minibatch_size_list = [246,614,614,1202,824,1279,3918,7654,36584,17010,42800,463715]
NN_size_list = ["64+64","64+64","64+64","64+64","64+64","64+64","64+64","64+64","64+64","128+128","256+256","64+64+64+64"]
RUNS_list = [100,100,100,100,100,100,100,100,100,100,100,10]
dataset_name = dataset_name_list[dataset_index]
minibatch_size = minibatch_size_list[dataset_index]
NN_size = NN_size_list[dataset_index]
RUNS = RUNS_list[dataset_index]
print(dataset_name)
model_name = "SVGP"
M = 50
max_Z = 0.99999
RMSE_all = []
noise_variance_all = []
kernel_type = "RBF+RBF"
optimizer_name = "LBFGSB"
framework_variant = "GP_corrected"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_NN_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE_original = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_test_labels_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_test_labels = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_test_NN_predictions_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_test_predictions = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_NN_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation_time_NN = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
num_test_point = len(Storage_test_labels[0])
print("num_test_point: {}".format(num_test_point))
RMSE_RIO = []
for i in range(len(Storage_test_labels)):
RMSE_RIO.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_test_predictions[i] + Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE_RIO).mean()))
RMSE_all.append(np.array(RMSE_RIO).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
kernel_type = "RBF"
framework_variant = "GP_corrected_inputOnly"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
RMSE = []
for i in range(len(Storage_test_labels)):
RMSE.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_test_predictions[i] + Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE).mean()))
RMSE_all.append(np.array(RMSE).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
kernel_type = "RBFY"
framework_variant = "GP_corrected_outputOnly"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
RMSE = []
for i in range(len(Storage_test_labels)):
RMSE.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_test_predictions[i] + Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE).mean()))
RMSE_all.append(np.array(RMSE).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
kernel_type = "RBF+RBF"
framework_variant = "GP"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
RMSE = []
for i in range(len(Storage_test_labels)):
RMSE.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE).mean()))
RMSE_all.append(np.array(RMSE).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
kernel_type = "RBF"
framework_variant = "GP_inputOnly"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
RMSE = []
for i in range(len(Storage_test_labels)):
RMSE.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE).mean()))
RMSE_all.append(np.array(RMSE).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
kernel_type = "RBFY"
framework_variant = "GP_outputOnly"
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','MAE_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
MAE = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within95Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within95Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within90Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within90Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','PCT_within68Interval_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
PCT_within68Interval = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_mean_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_mean = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Storage_var_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
Storage_var = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Computation_time_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
computation = pickle.load(result_file)
result_file_name = os.path.join(os.path.dirname(os.path.abspath(__file__)),'Results','Kernel_hyperparameter_{}_suffledData_{}_{}_{}_{}_M{}_minibatch{}_{}_{}run.pkl'.format(framework_variant, dataset_name, model_name, NN_size, kernel_type, M, minibatch_size, optimizer_name, RUNS))
with open(result_file_name, 'rb') as result_file:
hyperparameter = pickle.load(result_file)
RMSE = []
for i in range(len(Storage_test_labels)):
RMSE.append(np.sqrt(mean_squared_error(Storage_test_labels[i], Storage_mean[i])))
print("{} RMSE mean: {}".format(framework_variant, np.array(RMSE).mean()))
RMSE_all.append(np.array(RMSE).mean())
noise_variance = []
for i in range(len(hyperparameter)):
noise_variance.append(hyperparameter[i][-1])
print("{} noise variance: {}".format(framework_variant, np.array(noise_variance).mean()))
noise_variance_all.append(np.array(noise_variance).mean())
print("dataset {}, Spearman’s Rank Correlation: {}".format(dataset_name, stats.spearmanr(RMSE_all, noise_variance_all)))