-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
44 lines (37 loc) · 1.4 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# USAGE
# python train_model.py --embeddings output/embeddings.pickle \
# --recognizer output/recognizer.pickle --le output/le.pickle
# import the necessary packages
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
import argparse
import pickle
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--embeddings", required=True,
help="path to serialized db of facial embeddings")
ap.add_argument("-r", "--recognizer", required=True,
help="path to output model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
help="path to output label encoder")
args = vars(ap.parse_args())
# load the face embeddings
print("[INFO] loading face embeddings...")
data = pickle.loads(open("output\\embeddings.pickle", "rb").read())
# encode the labels
print("[INFO] encoding labels...")
le = LabelEncoder()
labels = le.fit_transform(data["names"])
# train the model used to accept the 128-d embeddings of the face and
# then produce the actual face recognition
print("[INFO] training model...")
recognizer = SVC(C=1.0, kernel="linear", probability=True)
recognizer.fit(data["embeddings"], labels)
# write the actual face recognition model to disk
f = open("output\\recognizer.pickle", "wb")
f.write(pickle.dumps(recognizer))
f.close()
# write the label encoder to disk
f = open("output\\le.pickle", "wb")
f.write(pickle.dumps(le))
f.close()