-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathworkflow_VHbb.py
980 lines (817 loc) · 48.3 KB
/
workflow_VHbb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
import awkward as ak
import numpy as np
import uproot
import pandas as pd
import math
import warnings
import os, pickle
import lightgbm as lgb
import gc
# import tensorflow as tf
# from keras.models import Sequential
# from keras.layers import Dense
# from keras.callbacks import EarlyStopping
# from keras.models import load_model
import CommonSelectors
from CommonSelectors import *
import inspect
import torch
from MVA.gnnmodels import GraphAttentionClassifier
from pocket_coffea.utils.utils import dump_ak_array
from pocket_coffea.workflows.base import BaseProcessorABC
from pocket_coffea.utils.configurator import Configurator
from pocket_coffea.lib.hist_manager import Axis
from pocket_coffea.lib.deltaR_matching import delta_phi
from pocket_coffea.lib.objects import (
jet_correction,
lepton_selection,
jet_selection,
btagging,
CvsLsorted,
get_dilepton,
get_dijet
)
def get_nu_4momentum(Lepton, MET):
mW = 80.38
# Convert pt, eta, phi, m to px, py, pz, E
px = Lepton.pt * np.cos(Lepton.phi)
py = Lepton.pt * np.sin(Lepton.phi)
pz = Lepton.pt * np.sinh(Lepton.eta)
E = np.sqrt(Lepton.mass**2 + Lepton.pt**2 * np.cosh(Lepton.eta)**2)
MET_px = MET.pt * np.cos(MET.phi)
MET_py = MET.pt * np.sin(MET.phi)
MisET2 = (MET_px**2 + MET_py**2)
mu = (mW**2) / 2 + MET_px * px + MET_py * py
a = (mu * pz) / (E**2 - pz**2)
a2 = a**2
b = ((E**2) * (MisET2) - mu**2) / (E**2 - pz**2)
condition = a2 - b >= 0
# Vectorized handling of conditions
root = np.sqrt(ak.where(condition, a2 - b, ak.zeros_like(a2)))
pz1 = a + root
pz2 = a - root
pznu = ak.where(np.abs(pz1) < np.abs(pz2), pz1, pz2)
Enu = np.sqrt(MisET2 + pznu**2)
# Handle cases where condition is False using your fallback logic
# Adapted to take into account the real parts of the roots if discriminant is negative
real_part = ak.where(condition, ak.zeros_like(a), a) # Use 'a' as the real part when condition is False
pznu = ak.where(condition, pznu, real_part) # Update pznu to use real_part when condition is False
Enu = np.sqrt(MisET2 + pznu**2) # Recalculate Enu with the updated pznu
p4nu_rec = ak.Array([MET_px, MET_py, pznu, Enu])
pt = np.sqrt(MET_px**2 + MET_py**2)
phi = np.arctan2(MET_py, MET_px)
theta = np.arctan2(pt, pznu)
eta = -np.log(np.tan(theta / 2))
m = np.sqrt(np.maximum(Enu**2 - (MET_px**2 + MET_py**2 + pznu**2), 0))
return ak.zip({"pt": pt, "eta": eta, "phi": phi, "mass": m},with_name="PtEtaPhiMCandidate")
def BvsLsorted(jets, tagger):
if tagger == "PNet":
btag = "btagPNetB"
elif tagger == "DeepFlav":
btag = "btagDeepFlavB"
elif tagger == "RobustParT":
btag = "btagRobustParTAK4B"
else:
raise NotImplementedError(f"This tagger is not implemented: {tagger}")
return jets[ak.argsort(jets[btag], axis=1, ascending=False)]
def get_dibjet(jets, tagger = 'PNet'):
fields = {
"pt": 0.,
"eta": 0.,
"phi": 0.,
"mass": 0.,
}
jets = ak.pad_none(jets, 2)
njet = ak.num(jets[~ak.is_none(jets, axis=1)])
dijet = jets[:, 0] + jets[:, 1]
for var in fields.keys():
fields[var] = ak.where(
(njet >= 2),
getattr(dijet, var),
fields[var]
)
fields["deltaR"] = ak.where( (njet >= 2), jets[:,0].delta_r(jets[:,1]), -1)
fields["deltaPhi"] = ak.where( (njet >= 2), abs(jets[:,0].delta_phi(jets[:,1])), -1)
fields["deltaEta"] = ak.where( (njet >= 2), abs(jets[:,0].eta - jets[:,1].eta), -1)
fields["j1Phi"] = ak.where( (njet >= 2), jets[:,0].phi, -1)
fields["j2Phi"] = ak.where( (njet >= 2), jets[:,1].phi, -1)
fields["j1pt"] = ak.where( (njet >= 2), jets[:,0].pt, -1)
fields["j2pt"] = ak.where( (njet >= 2), jets[:,1].pt, -1)
fields["j1mass"] = ak.where( (njet >= 2), jets[:,0].mass, -1)
fields["j2mass"] = ak.where( (njet >= 2), jets[:,1].mass, -1)
if tagger == "PNet":
BvL = "btagPNetB"
CvL = "btagPNetCvL"
CvB = "btagPNetCvB"
elif tagger == "DeepFlav":
BvL = "btagDeepFlavB"
CvL = "btagDeepFlavCvL"
CvB = "btagDeepFlavCvB"
elif tagger == "RobustParT":
BvL = "btagRobustParTAK4B"
CvL = "btagRobustParTAK4CvL"
CvB = "btagRobustParTAK4CvB"
else:
raise NotImplementedError(f"This tagger is not implemented: {tagger}")
if tagger:
fields["j1BvsL"] = ak.where( (njet >= 2), jets[:,0][BvL], -1)
fields["j2BvsL"] = ak.where( (njet >= 2), jets[:,1][BvL], -1)
fields["j1CvsL"] = ak.where( (njet >= 2), jets[:,0][CvL], -1)
fields["j2CvsL"] = ak.where( (njet >= 2), jets[:,1][CvL], -1)
fields["j1CvsB"] = ak.where( (njet >= 2), jets[:,0][CvB], -1)
fields["j2CvsB"] = ak.where( (njet >= 2), jets[:,1][CvB], -1)
# Lead b-jet pt: larger of the first two jets' pt
fields["leadb_pt"] = ak.where( njet >= 2, ak.max(ak.Array([jets[:, 0].pt, jets[:, 1].pt]), axis=0), -1)
# Sublead b-jet pt: smaller of the first two jets' pt
fields["subleadb_pt"] = ak.where(njet >= 2, ak.min(ak.Array([jets[:, 0].pt, jets[:, 1].pt]), axis=0), -1)
dibjet = ak.zip(fields, with_name="PtEtaPhiMCandidate")
return dibjet
def get_additionalleptons(electrons, muons, baseNum=0):
if muons is None and electrons is None:
raise("Must specify either muon or electron collection in get_dilepton() function")
elif muons is None and electrons is not None:
leptons = ak.pad_none(ak.with_name(electrons, "PtEtaPhiMCandidate"), baseNum)
elif electrons is None and muons is not None:
leptons = ak.pad_none(ak.with_name(muons, "PtEtaPhiMCandidate"), baseNum)
else:
leptons = ak.pad_none(ak.with_name(ak.concatenate([ muons[:, 0:baseNum], electrons[:, 0:baseNum]], axis=1), "PtEtaPhiMCandidate"), baseNum)
nlep = ak.num(leptons[~ak.is_none(leptons, axis=1)])
NAL = nlep - baseNum
return NAL
def LorentzBooster(array_pt, array_eta, array_phi, array_mass):
# Flatten arrays
flat_pt = ak.to_numpy(ak.flatten(array_pt))
flat_eta = ak.to_numpy(ak.flatten(array_eta))
flat_phi = ak.to_numpy(ak.flatten(array_phi))
flat_mass = ak.to_numpy(ak.flatten(array_mass))
compute_lib = ctypes.CDLL('/afs/cern.ch/work/l/lichengz/private/VHbb/VHccPoCo/scripts/interface/compute_vectors.so')
# TODO can add it into another parameter yml file
# Define the argument types for the C++ function
compute_lib.compute_4vectors.argtypes = [
ctypes.POINTER(ctypes.c_double), # pt
ctypes.POINTER(ctypes.c_double), # eta
ctypes.POINTER(ctypes.c_double), # phi
ctypes.POINTER(ctypes.c_double), # mass
ctypes.POINTER(ctypes.c_double), # px
ctypes.POINTER(ctypes.c_double), # py
ctypes.POINTER(ctypes.c_double), # pz
ctypes.POINTER(ctypes.c_double), # energy
ctypes.c_int # size
]
# Allocate arrays for the outputs
size = len(flat_pt)
px = np.zeros(size, dtype=np.float64)
py = np.zeros(size, dtype=np.float64)
pz = np.zeros(size, dtype=np.float64)
energy = np.zeros(size, dtype=np.float64)
# Call the C++ function
compute_lib.compute_4vectors(
flat_pt.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
flat_eta.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
flat_phi.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
flat_mass.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
px.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
py.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
pz.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
energy.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
size
)
# Print the results
print("px:", px)
print("py:", py)
print("pz:", pz)
print("energy:", energy)
return 0
class VHbbBaseProcessor(BaseProcessorABC):
def __init__(self, cfg: Configurator):
super().__init__(cfg)
self.proc_type = self.params["proc_type"]
self.run_bdt = self.params["run_bdt"]
self.run_dnn = self.params["run_dnn"]
self.separate_models = self.params["separate_models"]
print("Processor initialized")
def apply_object_preselection(self, variation):
'''
'''
# Include the supercluster pseudorapidity variable
electron_etaSC = self.events.Electron.eta + self.events.Electron.deltaEtaSC
self.events["Electron"] = ak.with_field(
self.events.Electron, electron_etaSC, "etaSC"
)
# Build masks for selection of muons, electrons, jets, fatjets
self.events["MuonGood"] = lepton_selection(
self.events, "Muon", self.params
)
self.events["ElectronGood"] = lepton_selection(
self.events, "Electron", self.params
)
leptons = ak.with_name(
ak.concatenate((self.events.MuonGood, self.events.ElectronGood), axis=1),
name='PtEtaPhiMCandidate',
)
self.events["LeptonGood"] = leptons[ak.argsort(leptons.pt, ascending=False)]
self.events["ll"] = get_dilepton(
self.events.ElectronGood, self.events.MuonGood
)
self.events["JetGood"], self.jetGoodMask = jet_selection(
self.events, "Jet", self.params, self._year, "LeptonGood"
)
self.events['EventNr'] = self.events.event
self.events["BJetGood"] = btagging(
self.events["JetGood"], self.params.btagging.working_point[self._year], wp=self.params.object_preselection.bJetWP)
def count_objects(self, variation):
self.events["nMuonGood"] = ak.num(self.events.MuonGood)
self.events["nElectronGood"] = ak.num(self.events.ElectronGood)
self.events["nLeptonGood"] = ak.num(self.events.LeptonGood)
self.events["nJet"] = ak.num(self.events.Jet)
self.events["nJetGood"] = ak.num(self.events.JetGood)
self.events["NaJ"] = self.events.nJetGood - 2 # additional jets
self.events["nBJetGood"] = ak.num(self.events.BJetGood)
# self.events["nfatjet"] = ak.num(self.events.FatJetGood)
def evaluateBDT(self, data):
print(self.params.Models.BDT[self.channel][self.events.metadata["year"]].model_file)
print()
# Read the model file
model = lgb.Booster(model_file=self.params.Models.BDT[self.channel][self.events.metadata["year"]].model_file)
#bdt_score = self.bdt_model.predict(data)
bdt_score = model.predict(data)
# Release memory
del model
gc.collect()
return bdt_score
def evaluateseparateBDTs(self, data):
data_df_low = data[data['dilep_pt'] < 150]
data_df_high = data[data['dilep_pt'] >= 150]
# Initialize empty arrays for scores
bdt_score_low = np.array([])
bdt_score_high = np.array([])
# Read the model files
model_low = lgb.Booster(model_file=self.params.Models.BDT[f'{self.channel}_low'][self.events.metadata["year"]].model_file)
model_high = lgb.Booster(model_file=self.params.Models.BDT[f'{self.channel}_high'][self.events.metadata["year"]].model_file)
# Predict only if data_df_low is non-empty
if not data_df_low.empty:
#bdt_score_low = self.bdt_low_model.predict(data_df_low)
bdt_score_low = model_low.predict(data_df_low)
# Predict only if data_df_high is non-empty
if not data_df_high.empty:
#bdt_score_high = self.bdt_high_model.predict(data_df_high)
bdt_score_high = model_high.predict(data_df_high)
# Concatenate the scores from low and high dataframes
bdt_score = np.concatenate((bdt_score_low, bdt_score_high), axis=0)
# Release memory
del model_low, model_high
gc.collect()
return bdt_score
def evaluateDNN(self, data):
#print("Evaluating DNN...")
#print(self.params.Models.DNN[self.channel][self.events.metadata["year"]].model_file)
#print()
# Load the model on demand
with tf.device('/CPU:0'): # Use CPU to avoid GPU memory issues
model = load_model(self.params.Models.DNN[self.channel][self.events.metadata["year"]].model_file)
dnn_score = model.predict(data, batch_size=32).ravel()
# Release memory
tf.keras.backend.clear_session()
del model
gc.collect()
#print("DNN evaluation completed.")
return dnn_score
def evaluateseparateDNNs(self, data):
data_df_low = data[data['dilep_pt'] < 150]
data_df_high = data[data['dilep_pt'] >= 150]
# Initialize empty arrays for scores
dnn_score_low = np.array([])
dnn_score_high = np.array([])
# Read the model file
model_low = load_model(self.params.Models.DNN[f'{self.channel}_low'][self.events.metadata["year"]].model_file)
model_high = load_model(self.params.Models.DNN[f'{self.channel}_high'][self.events.metadata["year"]].model_file)
# Predict only if data_df_low is non-empty
if not data_df_low.empty:
print("Predicting for low dilep_pt...")
with tf.device('/CPU:0'): # Use CPU to avoid GPU memory issues
model_low = load_model(self.params.DNN_low)
dnn_score_low = model_low.predict(data_df_low, batch_size=32).ravel()
tf.keras.backend.clear_session()
del model_low
gc.collect()
print("Prediction for low dilep_pt completed.")
# Predict only if data_df_high is non-empty
if not data_df_high.empty:
print("Predicting for high dilep_pt...")
with tf.device('/CPU:0'): # Use CPU to avoid GPU memory issues
model_high = load_model(self.params.DNN_high)
dnn_score_high = model_high.predict(data_df_high, batch_size=32).ravel()
tf.keras.backend.clear_session()
del model_high
gc.collect()
print("Prediction for high dilep_pt completed.")
dnn_score = np.concatenate((dnn_score_low, dnn_score_high), axis=0)
print("Separate DNN evaluation completed.")
return dnn_score
def resize_tensor(self,tensor,target):
m, n, p = tensor.shape
if n > target:
return tensor[:, :target, :]
elif n < target:
padding = torch.zeros((m, target - n, p), device=tensor.device, dtype=tensor.dtype)
return torch.cat((tensor, padding), dim=1)
else:
return tensor
def evaluateGNN(self,data):
# model = torch.jit.load(self.params.Models.GNN[self.channel][self.events.metadata["year"]].model_file) #TODO This would be the most elegant way, but the current model does not work with torch.jit
modelparams = pickle.load(open(self.params.Models.GNN[self.channel][self.events.metadata["year"]].params,'rb'))
model = GraphAttentionClassifier(**modelparams)
model.load_state_dict(torch.load(self.params.Models.GNN[
self.channel][self.events.metadata["year"]].model_file,weights_only=True,map_location=self.device))
model.eval()
if self.proc_type=="ZLL":
varsdict = {
'jet' : ["JetGood_btagCvL","JetGood_btagCvB"],
'jetp4' : ["JetGood_pt","JetGood_eta","JetGood_phi","JetGood_mass"],
'lep' : ["LeptonGood_miniPFRelIso_all","LeptonGood_pfRelIso03_all"],
'lepp4' : ["LeptonGood_pt","LeptonGood_eta","LeptonGood_phi","LeptonGood_mass"],
'll' : ["ll_pt","ll_eta","ll_phi","ll_mass"],
'glo' : ["MET_pt","MET_phi","nPV"],
'cat' : ["LeptonCategory"]
}
lcount = 2
catpad = 0
elif self.proc_type=="WLNu":
varsdict = {
'jet' : ["JetGood_btagCvL","JetGood_btagCvB"],
'jetp4' : ["JetGood_pt","JetGood_eta","JetGood_phi","JetGood_mass"],
'lep' : ["LeptonGood_miniPFRelIso_all","LeptonGood_pfRelIso03_all"],
'lepp4' : ["LeptonGood_pt","LeptonGood_eta","LeptonGood_phi","LeptonGood_mass"],
'll' : ["W_pt","W_eta","W_phi","W_mt"],
'glo' : ["MET_pt","MET_phi","nPV","W_m"],
'cat' : ["LeptonCategory"]
}
lcount = 1
catpad = 0
elif self.proc_type=="ZNuNu":
varsdict = {
'jet' : ["JetGood_btagCvL","JetGood_btagCvB"],
'jetp4' : ["JetGood_pt","JetGood_eta","JetGood_phi","JetGood_mass"],
'lep' : [],
'lepp4' : [],
'll' : ["Z_pt","Z_eta","Z_phi","Z_m"],
'glo' : ["MET_pt","MET_phi","nPV"],
'cat' : []
}
lcount = 1
catpad = None
pads = {
'jet' : 6,
'jetp4' : 6,
'lep' : lcount,
'lepp4' : lcount,
'll' : 0,
'glo' : 0,
'cat' : catpad
}
tensordict = {}
for arr in varsdict:
maxelem = pads[arr]
if maxelem is None or len(varsdict[arr])==0:
tensordict[arr] = torch.tensor([1])
continue
for field in varsdict[arr]:
var = data[field]
if maxelem > 0:
N = np.max(ak.num(var, axis=1))
padded = ak.fill_none(ak.pad_none(var,N,axis=1),0)
else:
padded = var
if arr not in tensordict:
tensordict[arr] = []
dtype = torch.float32
if arr == 'cat': dtype = torch.int64
tensordict[arr].append(torch.tensor(padded,dtype=dtype))
stacked = torch.stack(tensordict[arr],dim=-1)
if maxelem > 0:
stacked = self.resize_tensor(stacked,maxelem)
tensordict[arr] = stacked
with torch.no_grad():
prediction = model(tensordict["jet"],tensordict["jetp4"],tensordict["lep"],tensordict["lepp4"],tensordict["ll"],tensordict["glo"],tensordict["cat"])[:,0]
del model, tensordict
return prediction.detach().cpu().numpy()
# Function that defines common variables employed in analyses and save them as attributes of `events`
def define_common_variables_before_presel(self, variation):
self.events["JetGood_Ht"] = ak.sum(abs(self.events.JetGood.pt), axis=1)
jetvars = ["btagCvL","btagCvB"]
leptonvars = ["miniPFRelIso_all","pfRelIso03_all"]
p4vars = ["pt","eta","phi","mass"]
if self.myJetTagger == "PNet":
self.events["JetGood_"+"btagB"] = self.events.JetGood["btagPNetB"]
self.events["JetGood_"+"btagCvL"] = self.events.JetGood["btagPNetCvL"]
self.events["JetGood_"+"btagCvB"] = self.events.JetGood["btagPNetCvB"]
elif self.myJetTagger == "DeepFlav":
self.events["JetGood_"+"btagB"] = self.events.JetGood["btagDeepFlavB"]
self.events["JetGood_"+"btagCvL"] = self.events.JetGood["btagDeepFlavCvL"]
self.events["JetGood_"+"btagCvB"] = self.events.JetGood["btagDeepFlavCvB"]
elif self.myJetTagger == "RobustParT":
self.events["JetGood_"+"btagB"] = self.events.JetGood["btagRobustParTAK4B"]
self.events["JetGood_"+"btagCvL"] = self.events.JetGood["btagRobustParTAK4CvL"]
self.events["JetGood_"+"btagCvB"] = self.events.JetGood["btagRobustParTAK4CvB"]
else:
raise NotImplementedError(f"This tagger is not implemented: {self.myJetTagger}")
for var in p4vars:
self.events["JetGood_"+var] = self.events.JetGood[var]
for var in leptonvars+p4vars:
self.events["LeptonGood_"+var] = self.events.LeptonGood[var]
for var in p4vars:
self.events["ll_"+var] = self.events.ll[var]
self.myJetTagger = self.params.ctagging[self._year]["tagger"]
self.events["dijet"] = get_dijet(self.events.JetGood)
self.events["JetsCvsL"] = CvsLsorted(self.events["JetGood"],
tagger = self.params.object_preselection.bJet_algorithm)
self.events["dijet_csort"] = get_dibjet(self.events.JetsCvsL,
tagger = self.params.object_preselection.bJet_algorithm)
self.events["JetsBvsL"] = BvsLsorted(self.events["JetGood"], self.params.object_preselection.bJet_algorithm)
self.events["dijet_bsort"] = get_dibjet(self.events.JetsBvsL, self.params.object_preselection.bJet_algorithm)
self.events["MET_used"] = ak.zip({
"pt": self.events.MET.pt,
"eta": ak.zeros_like(self.events.MET.pt),
"phi": self.events.MET.phi,
"mass": ak.zeros_like(self.events.MET.pt),
"charge": ak.zeros_like(self.events.MET.pt),
},with_name="PtEtaPhiMCandidate")
self.events["pt_miss"] = self.events.MET_used.pt
self.events["btag_cut_L"] = self.params.btagger[self._year][self.params.object_preselection.bJet_algorithm].WP.L
self.events["btag_cut_M"] = self.params.btagger[self._year][self.params.object_preselection.bJet_algorithm].WP.M
self.events["btag_cut_T"] = self.params.btagger[self._year][self.params.object_preselection.bJet_algorithm].WP.T
self.events["btag_cut_XT"] = self.params.btagger[self._year][self.params.object_preselection.bJet_algorithm].WP.XT
self.events["btag_cut_XXT"] = self.params.btagger[self._year][self.params.object_preselection.bJet_algorithm].WP.XXT
def define_common_variables_after_presel(self, variation):
odd_event_mask = (self.events.EventNr % 2 == 1)
# if self._isMC:
# self.events["nGenPart"] = ak.num(self.events.GenPart)
# self.events["GenPart_eta"] = self.events.GenPart.eta
# self.events["GenPart_genPartIdxMother"] = self.events.GenPart.genPartIdxMother
# self.events["GenPart_mass"] = self.events.GenPart.mass
# self.events["GenPart_pdgId"] = self.events.GenPart.pdgId
# self.events["GenPart_phi"] = self.events.GenPart.phi
# self.events["GenPart_pt"] = self.events.GenPart.pt
# self.events["GenPart_status"] = self.events.GenPart.status
# self.events["GenPart_statusFlags"] = self.events.GenPart.statusFlags
# # a C++ interface test
# # LorentzBooster(self.events.GenPart_pt,
# # self.events.GenPart_eta,
# # self.events.GenPart_phi,
# # self.events.GenPart_mass)
# self.events["LHE_AlphaS"] = self.events.LHE.AlphaS
# self.events["LHE_HT"] = self.events.LHE.HT
# self.events["LHE_HTIncoming"] = self.events.LHE.HTIncoming
# self.events["LHE_Nb"] = self.events.LHE.Nb
# self.events["LHE_Nc"] = self.events.LHE.Nc
# self.events["LHE_Nglu"] = self.events.LHE.Nglu
# self.events["LHE_Njets"] = self.events.LHE.Njets
# self.events["LHE_NpLO"] = self.events.LHE.NpLO
# self.events["LHE_NpNLO"] = self.events.LHE.NpNLO
# self.events["LHE_Nuds"] = self.events.LHE.Nuds
# self.events["LHE_Vpt"] = self.events.LHE.Vpt
# self.events["LHEPart_eta"] = self.events.LHEPart.eta
# self.events["LHEPart_incomingpz"] = self.events.LHEPart.incomingpz
# self.events["LHEPart_mass"] = self.events.LHEPart.mass
# self.events["LHEPart_pdgId"] = self.events.LHEPart.pdgId
# self.events["LHEPart_phi"] = self.events.LHEPart.phi
# self.events["LHEPart_pt"] = self.events.LHEPart.pt
# self.events["LHEPart_spin"] = self.events.LHEPart.spin
# self.events["LHEPart_status"] = self.events.LHEPart.status
# self.events["nLHEPart"] = ak.num(self.events.LHEPart)
if self.proc_type=="ZLL":
### General
self.events["NaL"] = get_additionalleptons(
self.events.ElectronGood, self.events.MuonGood, 2
) # number of additional leptons
self.events["dijet_m"] = self.events.dijet_csort.mass
self.events["dijet_pt"] = self.events.dijet_csort.pt
self.events["dijet_dr"] = self.events.dijet_csort.deltaR
self.events["dijet_deltaPhi"] = self.events.dijet_csort.deltaPhi
self.events["dijet_deltaEta"] = self.events.dijet_csort.deltaEta
self.events["dijet_BvsL_max"] = self.events.dijet_csort.j1BvsL
self.events["dijet_BvsL_min"] = self.events.dijet_csort.j2BvsL
self.events["dijet_CvsL_max"] = self.events.dijet_csort.j1CvsL
self.events["dijet_CvsL_min"] = self.events.dijet_csort.j2CvsL
self.events["dijet_CvsB_max"] = self.events.dijet_csort.j1CvsB
self.events["dijet_CvsB_min"] = self.events.dijet_csort.j2CvsB
self.events["dijet_pt_max"] = self.events.dijet_csort.j1pt
self.events["dijet_pt_min"] = self.events.dijet_csort.j2pt
self.events["dibjet_m"] = self.events.dijet_bsort.mass
self.events["dibjet_pt"] = self.events.dijet_bsort.pt
self.events["dibjet_eta"] = self.events.dijet_bsort.eta
self.events["dibjet_phi"] = self.events.dijet_bsort.phi
self.events["dibjet_dr"] = self.events.dijet_bsort.deltaR
self.events["dibjet_deltaPhi"] = self.events.dijet_bsort.deltaPhi
self.events["dibjet_deltaEta"] = self.events.dijet_bsort.deltaEta
self.events["dibjet_BvsL_max"] = self.events.dijet_bsort.j1BvsL
self.events["dibjet_BvsL_min"] = self.events.dijet_bsort.j2BvsL
self.events["dibjet_CvsL_max"] = self.events.dijet_bsort.j1CvsL
self.events["dibjet_CvsL_min"] = self.events.dijet_bsort.j2CvsL
self.events["dibjet_CvsB_max"] = self.events.dijet_bsort.j1CvsB
self.events["dibjet_CvsB_min"] = self.events.dijet_bsort.j2CvsB
self.events["dibjet_pt_max"] = self.events.dijet_bsort.j1pt
self.events["dibjet_pt_min"] = self.events.dijet_bsort.j2pt
self.events["dibjet_mass_max"] = self.events.dijet_bsort.j1mass
self.events["dibjet_mass_min"] = self.events.dijet_bsort.j2mass
self.events["dilep_m"] = self.events.ll.mass
self.events["dilep_pt"] = self.events.ll.pt
self.events["dilep_eta"] = self.events.ll.eta
self.events["dilep_phi"] = self.events.ll.phi
self.events["dilep_dr"] = self.events.ll.deltaR
self.events["dilep_deltaPhi"] = self.events.ll.deltaPhi
self.events["dilep_deltaEta"] = self.events.ll.deltaEta
# self.events["ZH_pt_ratio"] = self.events.dijet_pt/self.events.dilep_pt
# self.events["ZH_deltaPhi"] = np.abs(self.events.ll.delta_phi(self.events.dijet_csort))
self.events["ZHbb_pt_ratio"] = self.events.dibjet_pt/self.events.dilep_pt
self.events["VHbb_pt_ratio"] = self.events.ZHbb_pt_ratio
self.events["ZHbb_deltaPhi"] = np.abs(self.events.ll.delta_phi(self.events.dijet_bsort))
self.events["VHbb_deltaPhi"] = self.events.ZHbb_deltaPhi
self.events["ZHbb_deltaR"] = np.abs(self.events.ll.delta_r(self.events.dijet_bsort))
self.events["VHbb_deltaR"] = self.events.ZHbb_deltaR
# why cant't we use delta_phi function here?
self.angle21_gen = (abs(self.events.ll.l2phi - self.events.dijet_csort.j1Phi) < np.pi)
self.angle22_gen = (abs(self.events.ll.l2phi - self.events.dijet_csort.j2Phi) < np.pi)
self.events["deltaPhi_l2_j1"] = ak.where(self.angle21_gen, abs(self.events.ll.l2phi - self.events.dijet_csort.j1Phi), 2*np.pi - abs(self.events.ll.l2phi - self.events.dijet_csort.j1Phi))
self.events["deltaPhi_l2_j2"] = ak.where(self.angle22_gen, abs(self.events.ll.l2phi - self.events.dijet_csort.j2Phi), 2*np.pi - abs(self.events.ll.l2phi - self.events.dijet_csort.j2Phi))
self.events["deltaPhi_l2_j1"] = np.abs(delta_phi(self.events.ll.l2phi, self.events.dijet_csort.j1Phi))
if self.run_bdt:
#events = self.events[odd_event_mask]
# Create a record of variables to be dumped as root/parquete file:
# variables_for_MVA_eval_list = ["dilep_m","dilep_pt","dilep_dr","dilep_deltaPhi","dilep_deltaEta",
# "dijet_m","dijet_pt","dijet_dr","dijet_deltaPhi","dijet_deltaEta",
# "dijet_CvsL_max","dijet_CvsL_min","dijet_CvsB_max","dijet_CvsB_min",
# "dijet_pt_max","dijet_pt_min",
# "ZH_pt_ratio","ZH_deltaPhi","deltaPhi_l2_j1","deltaPhi_l2_j2"]
# variables_for_MVA_eval = ak.zip({v:self.events[v] for v in variables_for_MVA_eval_list}) #TODO: use odd_events instead
gnn_vars = ["JetGood_btagCvL","JetGood_btagCvB",
"JetGood_pt","JetGood_eta","JetGood_phi","JetGood_mass",
"LeptonGood_miniPFRelIso_all","LeptonGood_pfRelIso03_all",
"LeptonGood_pt","LeptonGood_eta","LeptonGood_phi","LeptonGood_mass",
"ll_pt","ll_eta","ll_phi","ll_mass",
"MET_pt","MET_phi","nPV","LeptonCategory"]
ak_gnn = self.events[gnn_vars] #TODO: use odd_events instead
# df = ak.to_pandas(variables_for_MVA_eval)
# columns_to_exclude = ['dilep_m']
# df = df.drop(columns=columns_to_exclude, errors='ignore')
self.channel = "2L"
if not self.params.separate_models:
variables_to_process = ak.zip({
"events_dilep_m": self.events["dilep_m"],
"events_dilep_pt": self.events["dilep_pt"],
"events_dilep_dr": self.events["dilep_dr"],
"events_dilep_deltaPhi": self.events["dilep_deltaPhi"],
"events_dilep_deltaEta": self.events["dilep_deltaEta"],
# "events_dibjet_m": self.events["dibjet_m"], # Commented out as per the features list
"events_dibjet_pt": self.events["dibjet_pt"],
"events_dibjet_dr": self.events["dibjet_dr"],
"events_dibjet_deltaPhi": self.events["dibjet_deltaPhi"],
"events_dibjet_deltaEta": self.events["dibjet_deltaEta"],
"events_dibjet_pt_max": self.events["dibjet_pt_max"],
"events_dibjet_pt_min": self.events["dibjet_pt_min"],
"events_dibjet_mass_max": self.events["dibjet_mass_max"],
"events_dibjet_mass_min": self.events["dibjet_mass_min"],
"events_dibjet_BvsL_max": self.events["dibjet_BvsL_max"],
"events_dibjet_BvsL_min": self.events["dibjet_BvsL_min"],
"events_dibjet_CvsB_max": self.events["dibjet_CvsB_max"],
"events_dibjet_CvsB_min": self.events["dibjet_CvsB_min"],
"events_VHbb_pt_ratio": self.events["VHbb_pt_ratio"],
"events_VHbb_deltaPhi": self.events["VHbb_deltaPhi"],
"events_VHbb_deltaR": self.events["VHbb_deltaR"]
})
df = ak.to_pandas(variables_to_process)
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateBDT(df_final, "Hbb")
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT_Hbb"] = bdt_predictions
## just for now
self.events["GNN_Hbb"] = np.zeros_like(self.events["BDT_Hbb"])
# if self.run_dnn:
# self.events["DNN_Hbb"] = self.evaluateDNN(df_final)
# else:
# self.events["DNN_Hbb"] = np.zeros_like(self.events["BDT_Hbb"])
if self.run_gnn:
self.events["GNN"] = self.evaluateGNN(ak_gnn)
else:
self.events["GNN"] = np.zeros_like(self.events["BDT_Hbb"])
else:
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateseparateBDTs(df_final)
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT"] = bdt_predictions
if self.run_dnn:
self.events["DNN"] = self.evaluateseparateDNNs(df_final)
else:
self.events["DNN"] = np.zeros_like(self.events["BDT"])
if self.proc_type=="WLNu":
self.events["NaL"] = get_additionalleptons(
self.events.ElectronGood, self.events.MuonGood, 1
) # number of additional leptons
self.events["lead_lep"] = ak.firsts(self.events.LeptonGood)
self.events["W_candidate"] = self.events.lead_lep + self.events.MET_used
self.events["W_m"] = self.events.W_candidate.mass
self.events["W_pt"] = self.events.W_candidate.pt
self.events["W_mt"] = np.sqrt(2*self.events.lead_lep.pt*self.events.MET_used.pt*(1-np.cos(self.events.lead_lep.delta_phi(self.events.MET_used))))
# # Step 1: Calculate delta_r for each b_jet with respect to lead_lep
# delta_rs = self.events.BJetGood.delta_r(self.events.lead_lep)
# # Step 2: Find the index of the b_jet with the minimum delta_r
# min_delta_r_index = ak.argmin(delta_rs, axis=1, keepdims=True)
# # Step 3: Select the b_jet with the minimum delta_r
# self.events["b_jet"] = self.events.BJetGood[min_delta_r_index]
self.events["dijet_m"] = self.events.dijet_csort.mass
self.events["dijet_pt"] = self.events.dijet_csort.pt
self.events["dijet_dr"] = self.events.dijet_csort.deltaR
self.events["dijet_deltaPhi"] = self.events.dijet_csort.deltaPhi
self.events["dijet_deltaEta"] = self.events.dijet_csort.deltaEta
self.events["dijet_CvsL_max"] = self.events.dijet_csort.j1CvsL
self.events["dijet_CvsL_min"] = self.events.dijet_csort.j2CvsL
self.events["dijet_CvsB_max"] = self.events.dijet_csort.j1CvsB
self.events["dijet_CvsB_min"] = self.events.dijet_csort.j2CvsB
self.events["dijet_pt_max"] = self.events.dijet_csort.j1pt
self.events["dijet_pt_min"] = self.events.dijet_csort.j2pt
self.events["dibjet_m"] = self.events.dijet_bsort.mass
self.events["dibjet_pt"] = self.events.dijet_bsort.pt
self.events["dibjet_eta"] = self.events.dijet_bsort.eta
self.events["dibjet_phi"] = self.events.dijet_bsort.phi
self.events["dibjet_dr"] = self.events.dijet_bsort.deltaR
self.events["dibjet_deltaPhi"] = self.events.dijet_bsort.deltaPhi
self.events["dibjet_deltaEta"] = self.events.dijet_bsort.deltaEta
self.events["dibjet_BvsL_max"] = self.events.dijet_bsort.j1BvsL
self.events["dibjet_BvsL_min"] = self.events.dijet_bsort.j2BvsL
self.events["dibjet_CvsL_max"] = self.events.dijet_bsort.j1CvsL
self.events["dibjet_CvsL_min"] = self.events.dijet_bsort.j2CvsL
self.events["dibjet_CvsB_max"] = self.events.dijet_bsort.j1CvsB
self.events["dibjet_CvsB_min"] = self.events.dijet_bsort.j2CvsB
self.events["dibjet_pt_max"] = self.events.dijet_bsort.j1pt
self.events["dibjet_pt_min"] = self.events.dijet_bsort.j2pt
self.events["dibjet_mass_max"] = self.events.dijet_bsort.j1mass
self.events["dibjet_mass_min"] = self.events.dijet_bsort.j2mass
self.events["lep_pt"] = self.events.lead_lep.pt
self.events["lep_eta"] = self.events.lead_lep.eta
self.events["lep_phi"] = self.events.lead_lep.phi
self.events["lep_m"] = self.events.lead_lep.mass
self.events["lead_b"] = ak.firsts(self.events.JetsBvsL)
self.events["deltaR_Leadb_Lep"] = self.events.lead_b.delta_r(self.events.lead_lep)
self.events["deltaPhi_Leadb_Lep"] = np.abs(delta_phi(self.events.lead_lep.phi, self.events.lead_b.phi))
self.events["deltaEta_Leadb_Lep"] = np.abs(self.events.lead_lep.eta - self.events.lead_b.eta)
# self.events["deltaR_l1_b"] = np.sqrt((self.events.lead_lep.eta - self.events.b_jet.eta)**2 + (self.events.lead_lep.phi - self.events.b_jet.phi)**2)
# self.events["deltaPhi_jet1_MET"] = np.abs(self.events.MET.delta_phi(self.events.JetGood[:,0]))
# self.events["deltaPhi_jet2_MET"] = np.abs(self.events.MET.delta_phi(self.events.JetGood[:,1]))
self.events["WHbb_pt_ratio"] = self.events.dibjet_pt/self.events.W_pt
self.events["VHbb_pt_ratio"] = self.events.WHbb_pt_ratio
self.events["WHbb_deltaPhi"] = np.abs(self.events.W_candidate.delta_phi(self.events.dijet_bsort))
self.events["VHbb_deltaPhi"] = self.events.WHbb_deltaPhi
self.events["WHbb_deltaEta"] = np.abs(self.events.W_candidate.eta - self.events.dijet_bsort.eta)
self.events["VHbb_deltaEta"] = self.events.WHbb_deltaEta
self.events["WHbb_deltaR"] = np.abs(self.events.W_candidate.delta_r(self.events.dijet_bsort))
self.events["VHbb_deltaR"] = self.events.WHbb_deltaR
self.events["WH_deltaPhi"] = np.abs(self.events.W_candidate.delta_phi(self.events.dijet_csort))
self.events["deltaPhi_l1_j1"] = np.abs(delta_phi(self.events.lead_lep.phi, self.events.dijet_bsort.j1Phi))
self.events["deltaPhi_l1_MET"] = np.abs(delta_phi(self.events.lead_lep.phi, self.events.MET_used.phi))
# self.events["b_CvsL"] = self.events.b_jet.btagDeepFlavCvL
# self.events["b_CvsB"] = self.events.b_jet.btagDeepFlavCvB
# self.events["b_Btag"] = self.events.b_jet.btagDeepFlavB
self.events["neutrino_from_W"] = get_nu_4momentum(self.events.lead_lep, self.events.MET_used)
self.events["top_candidate"] = self.events.lead_lep + self.events.lead_b + self.events.neutrino_from_W
self.events["top_mass"] = (self.events.lead_lep + self.events.lead_b + self.events.neutrino_from_W).mass
if self.run_dnn:
odd_events = self.events[odd_event_mask]
# Create a record of variables to be dumped as root/parquete file:
variables_to_process = ak.zip({
"dijet_m": self.events["dijet_m"],
"dijet_pt": self.events["dijet_pt"],
"dijet_dr": self.events["dijet_dr"],
"dijet_deltaPhi": self.events["dijet_deltaPhi"],
"dijet_deltaEta": self.events["dijet_deltaEta"],
"dijet_CvsL_max": self.events["dijet_CvsL_max"],
"dijet_CvsL_min": self.events["dijet_CvsL_min"],
"dijet_CvsB_max": self.events["dijet_CvsB_max"],
"dijet_CvsB_min": self.events["dijet_CvsB_min"],
"dijet_pt_max": self.events["dijet_pt_max"],
"dijet_pt_min": self.events["dijet_pt_min"],
"W_mt": self.events["W_mt"],
"W_pt": self.events["W_pt"],
"pt_miss": self.events["pt_miss"],
"WH_deltaPhi": self.events["WH_deltaPhi"],
"deltaPhi_l1_j1": self.events["deltaPhi_l1_j1"],
"deltaPhi_l1_MET": self.events["deltaPhi_l1_MET"],
"deltaPhi_l1_b": self.events["deltaPhi_l1_b"],
"deltaEta_l1_b": self.events["deltaEta_l1_b"],
"deltaR_l1_b": self.events["deltaR_l1_b"],
"b_CvsL": self.events["b_CvsL"],
"b_CvsB": self.events["b_CvsB"],
"b_Btag": self.events["b_Btag"],
"top_mass": self.events["top_mass"]
})
df = ak.to_pandas(variables_to_process)
df = df.drop(columns=columns_to_exclude, errors='ignore')
self.channel = "1L"
if not self.params.separate_models:
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateBDT(df_final)
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT"] = bdt_predictions
if self.run_dnn:
self.events["DNN"] = self.evaluateDNN(df_final)
else:
self.events["DNN"] = np.zeros_like(self.events["BDT"])
else:
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateseparateBDTs(df_final)
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT"] = bdt_predictions
if self.run_dnn:
self.events["DNN"] = self.evaluateseparateDNNs(df_final)
else:
self.events["DNN"] = np.zeros_like(self.events["BDT"])
if self.proc_type=="ZNuNu":
### General
self.events["Z_candidate"] = self.events.MET_used
self.events["Z_pt"] = self.events.Z_candidate.pt
self.events["dijet_m"] = self.events.dijet_csort.mass
self.events["dijet_pt"] = self.events.dijet_csort.pt
self.events["dijet_dr"] = self.events.dijet_csort.deltaR
self.events["dijet_deltaPhi"] = self.events.dijet_csort.deltaPhi
self.events["dijet_deltaEta"] = self.events.dijet_csort.deltaEta
self.events["dijet_CvsL_max"] = self.events.dijet_csort.j1CvsL
self.events["dijet_CvsL_min"] = self.events.dijet_csort.j2CvsL
self.events["dijet_CvsB_max"] = self.events.dijet_csort.j1CvsB
self.events["dijet_CvsB_min"] = self.events.dijet_csort.j2CvsB
self.events["dijet_pt_max"] = self.events.dijet_csort.j1pt
self.events["dijet_pt_min"] = self.events.dijet_csort.j2pt
self.events["dibjet_m"] = self.events.dijet_bsort.mass
self.events["dibjet_pt"] = self.events.dijet_bsort.pt
self.events["dibjet_eta"] = self.events.dijet_bsort.eta
self.events["dibjet_phi"] = self.events.dijet_bsort.phi
self.events["dibjet_dr"] = self.events.dijet_bsort.deltaR
self.events["dibjet_deltaPhi"] = self.events.dijet_bsort.deltaPhi
self.events["dibjet_deltaEta"] = self.events.dijet_bsort.deltaEta
self.events["dibjet_BvsL_max"] = self.events.dijet_bsort.j1BvsL
self.events["dibjet_BvsL_min"] = self.events.dijet_bsort.j2BvsL
self.events["dibjet_CvsL_max"] = self.events.dijet_bsort.j1CvsL
self.events["dibjet_CvsL_min"] = self.events.dijet_bsort.j2CvsL
self.events["dibjet_CvsB_max"] = self.events.dijet_bsort.j1CvsB
self.events["dibjet_CvsB_min"] = self.events.dijet_bsort.j2CvsB
self.events["dibjet_pt_max"] = self.events.dijet_bsort.j1pt
self.events["dibjet_pt_min"] = self.events.dijet_bsort.j2pt
self.events["dibjet_mass_max"] = self.events.dijet_bsort.j1mass
self.events["dibjet_mass_min"] = self.events.dijet_bsort.j2mass
self.events["ZHbb_pt_ratio"] = self.events.dijet_bsort.pt/self.events.Z_candidate.pt
self.events["VHbb_pt_ratio"] = self.events.ZHbb_pt_ratio
self.events["ZH_deltaPhi"] = np.abs(self.events.Z_candidate.delta_phi(self.events.dijet_bsort))
self.events["VHbb_deltaPhi"] = self.events.ZH_deltaPhi
self.events["deltaPhi_jet1_MET"] = np.abs(self.events.MET.delta_phi(self.events.JetsBvsL[:,0]))
self.events["deltaPhi_jet2_MET"] = np.abs(self.events.MET.delta_phi(self.events.JetsBvsL[:,1]))
if self.run_dnn:
odd_events = self.events[odd_event_mask]
# Create a record of variables to be dumped as root/parquete file:
variables_to_process = ak.zip({
"dijet_m": self.events["dijet_m"],
"dijet_pt": self.events["dijet_pt"],
"dijet_dr": self.events["dijet_dr"],
"dijet_deltaPhi": self.events["dijet_deltaPhi"],
"dijet_deltaEta": self.events["dijet_deltaEta"],
"dijet_CvsL_max": self.events["dijet_CvsL_max"],
"dijet_CvsL_min": self.events["dijet_CvsL_min"],
"dijet_CvsB_max": self.events["dijet_CvsB_max"],
"dijet_CvsB_min": self.events["dijet_CvsB_min"],
"dijet_pt_max": self.events["dijet_pt_max"],
"dijet_pt_min": self.events["dijet_pt_min"],
"ZH_pt_ratio": self.events["ZH_pt_ratio"],
"ZH_deltaPhi": self.events["ZH_deltaPhi"],
"Z_pt": self.events["Z_pt"]
})
df = ak.to_pandas(variables_to_process)
# columns_to_exclude = ['dilep_m']
df = df.drop(columns=columns_to_exclude, errors='ignore')
self.channel = "0L"
if not self.params.separate_models:
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateBDT(df_final)
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT"] = bdt_predictions
if self.run_dnn:
self.events["DNN"] = self.evaluateDNN(df_final)
else:
self.events["DNN"] = np.zeros_like(self.events["BDT"])
else:
df_final = df.reindex(range(len(self.events)), fill_value=np.nan)
bdt_predictions = self.evaluateseparateBDTs(df_final)
bdt_predictions = np.where(df_final.isnull().any(axis=1), np.nan, bdt_predictions)
# Convert NaN to None
bdt_predictions = [None if np.isnan(x) else x for x in bdt_predictions]
self.events["BDT"] = bdt_predictions
if self.run_dnn:
self.events["DNN"] = self.evaluateseparateDNNs(df_final)
else:
self.events["DNN"] = np.zeros_like(self.events["BDT"])